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FOREWORD

This report shows tutorial derivations (a form of student’s guide) of all key equations needed
in the research of three—dimensional eye rotations, which happens to coincide with virtually all key
equations needed to understand the rotational motions of spacecrafts and missiles. Considering the
fact that mathematics may not be the primary field of competence for most medical researchers, the
author of this report took special care to explain the derivations from a very elementary level and to
gradually progress to advanced equations in a logical, self-containing way. The author introduces
some innovative ways of explaining otherwise difficult concepts and derivations in several topics.

A few years back, the author was a visiting scientist for a year at the Department of Neurology
of the Johns Hopkins School of Medicine at the invitation of his former advisor, Professor David A.
Robinson. During his stay at Hopkins, he realized, based on requests and encouragement from
colleagues, a need for a comprehensive book of this nature containing all key equations and their
derivations in one volume. In writing this report, the author followed the pedagogical philosophy that
the best way to understand the equations and to be able to use them with confidence is to be able to
derive them from the basics in an easy—to—follow, yet rigorous way. For this reason, this report starts
with elementary trigonometry by design, and advances logically to a higher level.

As the bibliography provided at the end of this report reveals, all equations in the report
originated from applications to spacecraft and missile dynamics. The only deviation in this report
is that the Head frame is identified with the reference frame, while the Eye frame is identified with
the moving or rotating frame.

Although this report starts from a modest level, it advances toward the end to fairly advanced
esoteric equations, which even most aerospace engineers may not be aware of, or may not encounter
during their career. These equations are highly desirable for a deeper insight into angular rotations.
For this reason, although this report is written primarily with medical researchers in mind, it is equally
recommended for scientists and engineers in the aerospace field dealing with the rotational dynamics
of missiles, spacecraft, and aircraft in the Department of the Navy.

Finally, the author of this report would like to dedicate this modest work of his to the benefit of
medical researchers and students in the United States and abroad who may be struggling with
unfamiliar mathematics in their work. This report is not copyrighted so that it may be reproduced
freely for educational purposes.

Questions or comments concerning the contents of this document should be addressed to
NSWCDD, Attn: Dr. Kee Soon Chun, K44, Dahlgren, Virginia 22448-5100, or telefaxed to
540-653-8382, or e~mail to <kChun@nswc.navy.mil>.

Approved by:

7 Koo

C. A. KALIVRETENOS, Head
Strategic and Strike Systems Department
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PREFACE

Dr. Kee Soon Chun was first exposed to the oculomotor system around 1976 as a graduate
student in my laboratory in the Wilmer Eye Institute at the Johns Hopkins School of Medicine where
he did his thesis research for a doctorate in Electrical Engineering. We made a model of the
vestibule—ocular reflex with a quick—phase mechanism to generate nystagmus (A model of Quick
Phase Generation in Vestibule-Ocular Reflex, by K. S. Chun and D. A. Robinson, Biological
Cybernetics 28, pp. 209-221(1978)). It introduced the concept of two functions of time: (1) The
“when” curve which, when the eye position reached it, initiated a quick phase; and (2) the “where”
curve to which the quick phase carried the eye. These are concepts that have been found useful
subsequently.

Many years later, in 1996, Kee Soon was granted a sabbatical by the Navy. After working for
many years on the mathematics underlying the flight of intercontinental ballistic missiles, he was
motivated by a desire to turn his talents to something of a more humanitarian nature and thought
again of Johns Hopkins and our laboratory. He joined us once again and helped our work on a neural
network model of the neural integrator (the one that converts vestibular velocity commands to
oculomotor position signals). While doing so, he became aware that much of the research in our
laboratory (that of Dr. David Zee) involved the analysis of eye movements in all three—dimensions.
This subject has been growing in importance over the last fifteen years, when one—dimensional
analyses were felt to be largely understood, and it was realized how easy it was to measure torsion
movements with the eye—coil/magnetic—field method. This has lead to the need for more
sophisticated mathematics when dealing with such things as coordinate transformations, Listing’s
Law, and quaternions. All of this caught Kee Soon’s fancy because it was not so very different from
what one needs in studying the flight of a missile over a revolving planet. He was inspired to bring
these mathematical tools together and catalogue them for the convenience of others. Thus, this
publication came about.

The result might be regarded as a reference source; a place to go and remind oneself of the
mathematical bases of the various tools we use in oculomotor analyses. For those not already
comfortable with vectors and matrices, this text may be too terse and compact to serve as a learning
tool although the sections on the Fick’s and Helmholtz’s coordinate systems may help the beginning
student to understand these potentially confusing representations. Also the description of
semicircular dynamics (Appendix B) is a useful introduction to anyone beginning a study of the
vestibule—ocular reflex.

David A. Robinson, Professor
School of Medicine
Johns Hopkins University

January 1999

Xi/(xii blank)
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SECTION 1

INTRODUCTION

1.1 THREE-DIMENSIONAL EYE ROTATIONS

This report explains the basic mathematics necessary to understand three-dimensional (3D)
eye rotations, in the easiest and the simplest way it can be presented.

The mathematical background assumed is not more demanding than the college freshman
level.

The goal of this report is to show easy-to—understand derivations for the key equations used
in the mathematics for 3D eye rotations. This is based on the philosophy that the ideal way to under-
stand and apply the equations is to be able to understand their derivations. To the author’s best
knowledge at this writing, there seems to be no report or book of this nature available. This writing
is a modest endeavor toward that direction, hoping someday someone will take over and continue
the task.

Analysis of 3D eye rotations requires a lot of mathematics, and the particular mathematical
methods that are commonly used stem from many areas that are themselves a wide field. This report
only touches on the standard methods used today. Many other methods are used and can be used
to gear the analysis to larger movements (such as the head movements). The reader must keep in
mind that every method has its limitations for eye movement analysis and should be used cautiously.

Section 1 introduces virtually all the basic linear algebra, along with Appendix A, required to
understand this report. Section 2 describes and demonstrates Euler’s Theorem, which is a central
concept in studying 3D rotations. Section 3 describes a geometrical approach to understanding
Listing’s and Donders’ Laws. These laws are immediate applications of this theorem in eye
movement analyses.

Section 4 covers Euler Angles. These are the minimum numbers of parameters required to
describe a rotation in space. Two sets of Euler Angles used most commonly in eye movement
applications, namely Fick’s and Helmholtz’s coordinate systems, are described in this section.

Central to understanding an application of the 3D rotations is the concept of Rotation
Matrices which is covered in Section 4. For a person dealing with 3D rotations, it is important to
understand rotation matrices, how to generate them within an experimental setup, and what they
represent. Sections 5 through 13 include the mathematical and geometrical descriptions of these
matrices, their characteristics, and their relationships to Fick’s and Helmholtz’s coordinates.

Sections 14 and 15 establish the concept of angular velocity in 3D rotations by demonstrating
the Theorem of Coriolis.

1-1
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Section 16 and the remaining sections turn our focus to another method of describing 3D
rotations. As aresult of Euler’s Theorem, instead of describing a rotation in space as three consecu-
tive rotations (resulting in Euler angles) we can define a set of parameters which defines an equiva-
lent single—axis of rotation and the angle of rotation around this axis. Quaternions and rotation
vectors are the two most widely used of such methods for describing rotations. These methods and
their special mathematics are described in Sections 16 through 26.

1.2 REVIEW OF SOME ALGEBRA

To start, we review the Pythagorean Theorem. Referring to Figure 1-1, we see that
cos® = x/rwhere r is the magnitude of the vector r, or

X = rcosB (1-1)
which is the component of r along the X~axis.
Also, we see that sinf = y/r, or
y = rsinB = rcos [90° — 6] (1-2)
which is the component of r along the Y-axis.
The method of determining the components of a vector (such as r in Figure 1-1) along the

coordinate axes this way is identical to the method for determining the elements of a Rotation
Matrix, or Coordinate Transformation Matrix (see Section 5, the Rotation Matrix).

Y
A
y p (X7Y)
r
J G
- » X
0 i X

Figure 1-1. Example of Pythagorean Theorem

1-2
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From Equation (1-1) and Equation (1-2):
x% + y2 = [rcos0]? + [rsin 0]2
= 12 [cos?0 + sin? 0]
= r? (since cos20 + sin?0 = 1) (1-3)

which is the familiar Pythagorean Theorem, and validates indirectly the method used to determine
the x and y components of r. Denoting the unit vector along the X-axis by i, and along the Y-axis
by j, we can represent the vector r in terms of x and y by:

r=ix+jy or r=jy+ix (1-4)

Note in Equation (1-4) that the vector addition commutes. We can do this because (referring
to Figure 1-1) we can reach the point p (x, y) either by moving to the right first and then upward,
or by moving upward first and then to the right. We emphasize this because the consecutive angular
motions generally do not commute. This will be demonstrated later.

1.3 DOT PRODUCT
Denote two vectors A and B in a 3D orthogonal frame by
A = a,i + ayj + ak (1-5)

B = by + byj + bk (1-6)
where i, j, and Kk are the unit vectors along the x, y, and z axes respectively.

The Dot Product (also called Scalar Product or Inner Product) denoted by A - B (pro-
nounced as A dot B) is defined to be

A - B = |A|[B|cos 6 1-7)

where 6 is the angle between A and B. Noting that [ij = [j| = 1 and il j, we have using Equa-
tion (1-7):

...
ot
]
(@]
o
7]

0[a
Il

o

(1-8)

1-3




NSWCDD/MP-99/17

Similarly,
= =k j=cosl =
i-j=j-k=k-i cosy 0 (1-9)
= =ji-k =cosZ =
Jri=k-j=i-k cos? 0 (1-10)
also,
iri=j-j=k-k=cos0=1 (1-11)
Therefore,
A - B = [a,i + ayj + aK] - [bxi + byj + bk] (1-12)

reduces to, using Equations (1-9), (1-10), and (1-11):
A-B = aby +aby+ab, =B:A (1-13)

The result of Equation (1-13) is a scalar value describing the projection of vector A onto
vector B (or vice versa). If A and B are orthogonal to each other (6=900), then A - B =0.

Expressing A and B by column vectors,

ay X
A= gy and B = |by
z b, (1-14)

we may express A - B equivalently by

X
A™B = [a ay az][gy]

Z
= axbx + ayby + azbz (1'15)

The transpose of A, denoted by AT is obtained by converting the columns of A into the rows
of A one at a time in sequence.

Equation (1-15) above yields the same results as A - B given in Equation (1-13). ATB is

referred to as the Inner Product, while A - B is referred to as the Dot Product although they both
mean the same thing. It is also called Scalar Product because the results are scalar, not vector.

1-4
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14 CROSS PRODUCT

\

The Cross Product (also called Vector Product) of two vectors A and B denoted by A X B
‘ (pronounced as A cross B) is another vector, defined by:
|

A X B = |A|B|sin6 u (1-16)
where 0 is the angle between vectors A and B, and u is a unit vector perpendicular to the plane con-

taining both A and B, and the direction of u is along the right hand thumb if its fingers curl from
A to B. Hence, this convention is called right hand rule.

Note the result of Equation (1-16) is vector orthogonal to both vectors AandB. If A X B = 0,
then it means the vectors A and B lie along the same line implying 6 must be 0.

It follows, using Equation (1-16):

i><j=sin%k=k; jxi=-k

T

j><k=sin§i=i; kXj=-
‘ PR | IR —
kX1f51n2J j; iXxXKk j 1-17)
Note
i X i=sin(0)k = 0 [zero vector]. (1-18)
Similarly,
JXj=k Xk =1iXi= 0/[zero vector]. (1-19)
It follows using Equation (1-5) and Equation (1-6):
A X B = [agd + ayj + ak] X [byi + byj + bkl (1-20)
which reduces to, using Equations (1-16) to (1-19):
Now, the following determinant:
i j k
bx by b
oy (1-22)

1-5
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gives the same results as Equation (1-21), and is much easier to compute. Therefore, A X B iscon-
ventionally expressed by:

i j ok
AXB = ax ay 4
bx by b,

(1-23)

and can be treated as the definition of the Cross Product given in Equation (1-16).

1.5 MATRIX REPRESENTATION OF THE CROSS PRODUCT

For R = i + 1yj + r,k and W = w,i + wyj + w,k, we get, using Equation (1-21) and
Equation (1-23):

i J k
WX R = [Wx Wy Wy
Ix Iy I

= [wyr; — waryli
+ [Warx — WiIlj
+ [Wyry — wyrx]K (1-24)

Now represent the vector R = 14i + ryj + 1,k by an equivalent Column Matrix

and a vector W = w,i + wyj + wk by

Wy

W = Wy

Wz

We want to find a matrix representation W*R corresponding to the vector representation
W X R given in Equation (1-24) such that the components of W*R is equal to the components of
W x R,

1-6
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It turns out that if we express W™ by:

O _WZ Wy

W* b Wz 0 _Wx
=Wy Wx 0

and perform the operation W*R , we have:

[ O _WZ Wy rX
W*R = WZ 0 —WX I'y
_Wy Wx 0 I‘Z

Wy rz - Wzry
= | WoIx — WxIy
ery - Wy rx

which is, component-wise, equal to Equation (1-24).

(1-25)

(1-26)

It follows that the vector Cross Product W X R may be equivalently expressed by the Matrix
Product of W*R in the sense that its components are the same. This is convenient because, while

W x R gives better physical insight, W*R is much easier in computer applications.

If we take the transpose of Equation (1-25):

- T
0 -w; Wy

[w*]T = |w. o -wx
Wy Wy 0

We find that matrix W* is skew—symmetric because

WT = -W* or W'= -[W'IT.

1-7
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See the following paragraph.

1.6 SOME DEFINITIONS OF MATRICES

The matrix obtained by interchanging the rows and columns of matrix A one by one is called
the Transpose of A, and is denoted by AT (A transpose).

For example, for

1 4]
|1 2 3 T _
3 6J
T
1 4 -
T 1 2 3
AT =12 5 =[
A7 [ ] : 5
It follows that,
T
[AT] = A (1-29)

It can be easily shown by direct substitutions (of, say, three-by-three matrices) that,

(A + B)T = AT + BT (1-30)
(kA)T = kAT (where k is a scalar.) (1-31)
(AB)T = BTAT (see Appendix A, Equation (A-8)) (1-32)
A Square Matrix such that,
A= AT (1-33)

is called a Symmetric Matrix. Thus, for a three-by—three Symmetric Matrix A:

an ap ap

A = |31 axpn ay
431 a3y asy

31 3y a3
= {312 A 3Ap| = AT (1-34)
13 23 433

1-8
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A Square Matrix B is the inverse of a Square Matrix A if

AB =BA =1 (1-35)

The inverse of A, if it exists, is denoted by A~!. Thus using B=A"! in Equation (1-35),

AAl = A71A =1 (1-36)

where I is the Identity Matrix. For instance, the three-by—three Identity Matrix is given by:

1 0 O
I={0 1 O : (1-37)
0 0 1

A Square Matrix A is called an Orthogonal Matrix if

AAT = ATA =1 : (1-38)

Thus, for a three-by-three Orthogonal Matrix A:
217 app 313 [ann 2 A3
AAT = [321 2 axp| [3p 3p ayp

431 343 33| |23 33 d3;

a1 21 ;| [2n 22 33
= (212 322 33| (321 3 ax3
813 23 43| |33 23 33y

. 1 0 0
=ATA=1I=|[0 1 O (1-39)
0 0 1

Comparing Equation (1-36) with Equation (1-38), we conclude the following for an
Orthogonal Matrix A,

AT = A-l (1-40)

It is demonstrated, in Appendix A, using two three-by—three Orthogonal Matrices A and B
that,

[AB]T = BTAT = B-1A~! = [AB] ™! (1-41)
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EULER’S THEOREM OF A SINGLE, EQUIVALENT ROTATION

SECTION 2
Euler’s Theorem states that if a moving frame initially coincident with a fixed reference frame
makes any number of rotations, regardless of how it reaches the final orientation, there always exists
a single equivalent rotation with a finite angle about a single—axis through the origin.
|

In Section 3, we will describe a direct application of this theorem to eye rotation analysis.

To demonstrate the theorem, consider an orthogonal Frame B (with axes Xg, Yg, and Zg) rotat-
ing about an arbitrary—axis u fixed in space (called the rotation—axis) relative to another orthogonal
Frame A (with axes Xa, Ya and Za), which is fixed in space and serves as a reference frame.
Frame B is initially coincident with Frame A, as shown in Figure 2-1.

Zg Z,

ROTATION-AXIS

Y, Yg

6XA,eXB

XA, XB

INITIALLY FRAME B IS COINCIDENT WITH FRAME A

Figure 2-1. Example of Euler’s Theorem

In Figure 2-1, u is an unit vector rigidly attached to the movable Frame B, while maintaining
a fixed direction relative to Frame A, (but not attached to Frame A). The unit vector u makes
angle Ox with both X4 and Xp axes, angle Oy with both Y, and Yp axes, and angle 67 with both
Z and Zp axes initially as shown in Figure 2-1. Note that the angles x4 0ya, and 6z that u makes
with Frame A remain constant, because the direction of u relative to Frame A is fixed. Also, the
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angles Oxp, Oyp, and 6zp that u makes with Frame B remain constant, because Frame B is rotating
around the axis of u, and u is rigidly attached to Frame B.

Now, rotate Frame B around u by an arbitrary angle ¢ while maintaining the direction of u
fixed relative to Frame A (relative to space), as shown in Figure 2-2.

Figure 2-2. Frame B Rotated Around u

The vector u is located in the reference Frame A by the angles 6y,, 8y, and 6, as shown
in Figure 2-2. After the rotation, u is located in the rotating Frame B by the angles 6yp, 8yp, and
8,p. Because of Euler’s theorem, and in reality,

Oxa = eXB, Oya = eYB, 824 = 028 2-1)
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We reached the orientation of Frame B in Figure 2-2 by an arbitrary rotation ¢ around a unit
vector pointing to an arbitrary (but fixed) direction. This rotation does not change 6yg, 8yp, or
B7g, as previously explained.

The Frame B that was initially aligned with Frame A could have reached the final orientation
of Frame B in Figure 2-2 by a sequence of many rotations about many different axes of rotation.
But we are searching for a unique way to define the orientation of Frame B relative to Frame A.
Establishing u by 0y, Oy, and 6, and rotation angle ¢ produces this unique definition of the
orientation of Frame B relative to Frame A.

Therefore, it is obvious that for any orientation of Frame B, there always exists a single, equiva-
lent rotation—axis with an equivalent rotation angle that could move Frame B from its initial orienta-
tion in the reference Frame A to its final orientation. As an analogy, consider two points in a plane,
such as P and Q. Since there are many paths that go from P to Q, we want to define a single path
— the straight line — as the unique passage from P to Q.

Remember, unit vector u always makes the same orientation angles 6x 6y and 6z with respect

to both Frame A and Frame B. Thus, it has the same components in both Frame A and Frame B.
This is shown in the following, denoting the magnitude of u by u which is unity:

Xy = ucosBy = cosBy = xp
ya = ucosBy = cosfy = yp

z, = ucosB, = cosB, = zp (2-2)

2-3/(2-4 blank)
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SECTION 3

LISTING’S LAW AND DONDERS’ LAW BY SIMPLE GEOMETRY

Euler’s Theorem of single equivalent rotation has an immediate application to eye movements
expressed in Donders’ Law and Listing’s Law.

Donders’ Law states that every eye position in space is described by a single orientation (fixed
bearing and elevation — a and P in Figure 3-1) of the eye.

Listing’s Law states that the eye can reach the final orientation through a single equivalent
rotation about an axis of rotation. The axes of rotation for all final eye orientation will be in the same
plane, called Listing’s Plane.

“~.. P FINAL POSITION
u (LINE OF SIGHT)

Zp

y
“o—» Y (LEFT)

X (FORWARD)

INITIAL POSITION
(LINE OF SIGHT)

PRIMARY/REFERENCE
POSITION

Figure 3-1. The Orientation of Line of Sight

Referring to Figure 3-1, the line of sight of the initial eye position is OX along the X-axis,
which we may consider as the primary/reference position; its final position is OP with the bearing
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a and the elevation . The eye may have reached the final position OP from the primary position
by various sequences or paths.

Recall from Euler’s Theorem that there exists an axis of rotation which brings OX to OP by
a single equivalent rotation, regardless of how the final position OP may have been reached from
the initial position OX. Listing’s Law uses Euler’s Theorem to find the Listing plane.

We now describe two methods for finding Euler’s axis of single equivalent rotation.

In the first method, Euler’s axis of rotation is found by constructing a perpendicular ling,
through origin, to the plane defined by lines formed by OX and OP. The perpendicular line is 0Z’
in Figure 3-2 and OZ"” in Figure 3-3. The line is the Euler’s rotation—axis that brings the OX to the
OP by the right hand rule, with the thumb pointing in the direction of the perpendicular line, OZ’.

Denoting the unit vector along OX by ux and the unit vector along OP by up, the vector cross
product uy X up yields a vector L which is perpendicular to the plane formed by uy and up. That
is,

L =ux Xup (3-1)
Referring to Figure 3-2, expressing up by its components in the X-Y-Z frame by

up = ixp + jyp + kzp (3-2)

and realizing that uy is equal to i since it is a unit vector along the X~axis, we have based on
Equation (3-1), using Equations (1-17) and (1-18):

L =i x (X, + jyp + kzp)

=i Xixp +1iX jyp +1iXKkz,

0 + ky, — jzp

Equation (3-3) shows that L must lie in the Y-Z plane since it has no i component. Since up
may represent any final eye position, the Equation (3-3) shows that all axes of rotation corresponding
to any final eye position must lie in the Y-Z plane, which is called Listing’s Plane.

The Equation (3-3) suggests that the angle ¢ which L makes with the Z—-axis (see Figure 3-2)
may be computed from:

29 L

tand = v or ¢ = tan (3-4)
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Referring to Figure 3-1, if we know the bearing a and the elevation f§ of OP or up , we may
determine Xp, Yp, and z, in Equation (3-2) by inspection as:

Xp = (cos B)cos a
Yp = (cos B)sin o
zp = sin f . (3-5)

In the second method, Euler’s rotation—axis is found by rotating coordinate frames in the fol-
lowing manner which shows that the angle ¢ is the torsion angle about the X—axis (primary/refer-
ence axis). :

Step 1: Construct a plane containing OX and OP; find the intersection of this plane with the
original Y-Z plane as shown in Figure 3-2. Call this intersection the Y’—axis. The line OY’ makes
an angle ¢ with the OY-axis, or £YOY'=¢.

Z
A
Z/
¢
Y/
L up E
o) X
0 : v
uy = i ¢
P
0
o N
X=X

Figure 3-2. Rotation of X-Y-Z Frame about X-Axis (Primary/Reference Axis)

Step 2: Rotate the X—Y-Z frame about the X-axis until the Y—axis reaches the Y’—axis, or until
the rotation angle about X~axis is equal to ¢. Call the new frame X'-Y'-Z".
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Then X-axis coincides with X’—axis, while the Y—axis moves to Y'—axis through angle ¢. The
Z-axis moves to Z'—axis also with angle ¢ while staying on the original Y-Z plane.

Note that both Z’—axis and Y'~axis are perpendicular to the X—axis because they remain in the
original Y-Z plane.

Step 3: Now rotate X'-Y’-Z’ frame about the Z’~axis by the angle 0, until OX (primary posi-
tion) coincides with OP (final position) as shown in Figure 3-3. Call this new frame X"-Y"-Z"
frame.

Z
ZI - le .
Y'"' (BEHIND THE Y-Z PLANE)
e L -’ YI
N THE Y-Z PLANE .S
(ONTHEY ) . . (ON THE Y-Z PLANE)
o|
L ‘ . ¢
O Y
p ¢
X' )
Xl!
9
X=X
OoX'" = OP
¢ = ROTATION ANGLE ABOUT X,
CALLED TORSION
= ROTATION ANGLE ABOUT Z

Figure 3-3. Euler’s axis of Rotation on the Listing’s Plane

Then the X—-axis (or the X’~axis) moves to X”—axis, Y'—axis moves to Y '—axis, and Z’-axis
remains at the same direction and becomes Z"—axis.
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Note that the Z”—axis (Z’-axis) lies on the original Y-Z plane. The X"~axis lies on the X"-Y”
plane (or X’-Y’ plane). The Y”-axis is located behind the vertical Y-Z plane, while still lying on
the X'-Y’ plane. The angle 0 is the single, equivalent rotation angle that makes the primary eye posi-
tion OX to the final eye position OP or OX”.

To summarize, in order to move the eye from the primary eye position OX (X—axis) to the final
eye position OP (X”~axis) by a single equivalent rotation, the eye has to be rotated about the Z"—axis
in Listing’s plane (which is the Y-Z plane) by angle 6 (the single equivalent rotation). Regardless
of any direction of the line OP, we can see that the axis of single equivalent rotation always lies on
the unique plane called the Listing’s plane.

We see that Donders’ Law and Listing’s Law imply that the angular rotation ¢ (in Figures 3-2
and 3-3), called cyclotorsion or simply torsion, is fixed for each final position (line of sight), regard-
less of the different paths the eye might have taken to reach there.

So, practically, we can test Listing Law by measuring torsion ¢ at any final eye position. The
dot product of the corresponding axis of rotation with the primary/reference position should be equal
to O (perpendicular).

In reality, the primary position is slightly lifted upward from the head’s straight forward refer-
ence position. This is equivalent to the rotation of the initial eye position (which is coincident with
the reference head position) by a small angle around the Y-axis.

For this situation, the Listing’s plane is tilted backward by the same small angle, and its axis
may be determined in the displaced eye frame by the similar method as explained in this section.
Coordinates may be transformed back to the reference head frame by means of a Rotation Matrix
for the Y—axis rotation. This will be discussed in Section 5.
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SECTION 4
EULER ANGLES

Euler Angles orient one orthogonal Frame B displaced relative to another orthogonal Frame A
by making three sequential rotations of Frame B relative to Frame A. The Frame B is initially
aligned with the Frame A by a common origin. The first rotation is about any axis of the initial
Frame B. The second rotation is about either of the two axes of the displaced Frame B not used for
the first rotation. The third rotation is about either of the two axes of the Frame B not used for the
second rotation. Thus, the number of permutations for the possible sequences of three Euler Angles
18 (3) (2) (2) or 12.

One particular sequence or set of Euler Angles has had wide application. In this set, the initial
Frame B with X, Yo, and Zg axes is rotated about its Zg—axis through an angle ¢, resulting in the
Frame B; with X, Y; and Z; axes (see Figure 4-1). Note that the Z;—axis coincides with the
Zg—axis during the first rotation. In the second rotation, the Frame B is rotated about its X;—axis
through an angle 8, resulting in the Frame B with X 5, Y5 and Z; axes (see Figure 4-2). Note that
the X,—axis coincides with the X;—axis during the second rotation. In the third rotation, the
Frame B, is rotated about its Zo—axis (displaced Z;—axis) by an angle 1, resulting in the Frame B3
with X3, Y3, and Z3 axes (see Figure 4-3). Note that the Zz—axis coincides with the Zy—axis during
the third rotation. This Zg, X;, Z; Euler Set is commonly used for robotic applications, and for
aircraft and missile applications.

Out of twelve possible sets of Euler Angles, only two sets are historically used in eye rotation
analyses: Fick’s system and Helmholtz’s system of Euler Angles. Fick’s system will be described
in Section 4.1, and Helmholtz’s system will be described in Section 4.2.

A

Do

Xo X

Figure 4-1. Frame B;
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Figure 4-2. Frame B,

ZZ=Z3

Figure 4-3. Frame B;
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4.1 FICK’S SYSTEM OF EULER ANGLES

In the Fick’s system, as in the Helmholtz’s system, initially both the Head frame and the Eye
frame are coincidentally aligned with both of their X—axes pointed straight forward, Y-axes hori-
zontally leftward, and Z-axes vertically upward.

The sequence of rotations in Fick’s system is about the Zg—axis of the initial Frame Ey, followed
by rotation about the Y;—axis of the Frame E; (the displaced Frame Eg) followed by rotation about
the X,—axis of the Frame E; (displaced Frame E;). This is a Zg, Y1, X, Euler Set.

For the first rotation of Fick’s system, the initial Frame Eg (E for Eye) with its Xo, Yo, Zo axes
is rotated about the Zg—axis resulting in the Frame E; with X;, Yy, Z; axes. This is shown in
Figure 4-4 using the rotation angle of 90° for clarity and ease of comprehension. We, of course,
understand that 90° eye rotation is not realizable physiologically. All eye rotation angles of Fick’s
system, as well as those of Helmholtz’s system, are constrained to be well less than 90° in reality.

For the second rotation, the Frame E; is rotated about its Y;—axis, resulting in the Frame E,
with X5, Y2, Z; axes. This is shown in Figure 4-5 using the rotation angle of 90°. Note that Y;—axis
is pointed into the paper. Thus, the thumb is pointed into the paper as well, when the right hand rule
is applied (Figure 4-5).

For the third rotation, the Frame Ej; is rotated about its X,—axis, resulting in the Frame E3 with
X3, Y3, Z3 axes (Figure 4-6).
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Xo

R ®

Z

upP
AO

900 ’/
FRAME Ej ~ >

D
> Y
LEFT ® > Yo
Xy (OUT OF PLANE)
FORWARD

Zg
A

900

(A) BEFORE THE ROTATION (ROTATION BY THE RIGHT HAND RULE)

Zl = ZO Zl

A

Zy

(B) AFTER THE ROTATION

POINTS OUT OF THE PAPER LIKE AN
ARROW HEAD

POINTS INTO THE PAPER LIKE AN
ARROW TAIL

Y1
/ FRAMEE;
> X, Y; (INTO PLANE)

Figure 4-4. First Rotation About the Zy—Axis in Fick’s System
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~ FRAME E;

U 900 900_

(B) AFTER THE ROTATION

Y
/ ®\ : > X,
X ‘\/
> X
(A) BEFORE THE ROTATION
Y, =Y
; ! Y, =Y,
> Z,
> 7, FRAME E;
\ /
v X
2
X5

|
Figure 4-5. Second Rotation About the Y{—Axis in Fick’s System

4-5




NSWCDD/MP-99/17

® > Z,

O FRAME E,

X, Xy
(A) BEFORE THE ROTATION
Zy
> Y, @ > Y,

Z3 AXIS IS OUT OF PLANE
FRAME Ej

(B) AFTER THE ROTATION

Figure 4-6. Third Rotation About the X,—Axis in Fick’s System
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4.2 HELMHOLTZ’S SYSTEM OF EULER ANGLES

In the Helmholtz’s system, as in the Fick’s system, initially the Head frame coincides with the
Eye frame with the X-axis pointed forward, the Y—axis leftward, and Z-axis upward.

The sequence of rotations in Helmholtz’s system is first about the Yo—axis of the initial
Frame Eq, followed by rotation about the Z;—axis of the Frame E; (the displaced Frame Ejg), fol-
lowed by rotation about the X»—axis of the Frame E, (the displaced Frame E; ). This is a Yy, Z;,
X5 Euler Set.

For the first rotation of Helmholtz’s system, the initial Frame Ej is rotated about its Yg—axis,
resulting in the Frame E; with X, Y}, Z; axes. This is shown in Figure 4-7, using rotation angle
of 900 again for demonstration only. All rotation angles of Helmholtz’s system are constrained to
be less than 900 in reality.

For the second rotations, the Frame E; is rotated about its Z;—axis resulting in the Frame E,
with X5, Y2, Z, axes. This is shown in Figure 4-8, using a rotation angle of 900,

For the third rotation, the Frame E, is rotated about its X,—axis, resulting in the Frame E3 with
X3, Y3, Z3 axes. This shown in Figure 4-9, using the rotation angle of 900

Note that the first two rotations of Fick’s system are the Zg—axis rotation followed by the
Y-axis rotation, while those of Helmholtz’s system are the Yg—axis rotation followed by the
Z,-axis rotation, which is the reverse order of the former. In both systems, the third rotation is about
the X,—axis. '
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ZO
Z, A
up
FRAME E,
> Y
0
LEFT
v ® O -
0
90 x,
FORWARD 000
(A) BEFORE THE ROTATION
ZI
Y, =Y,
FRAME E,
v v
Xl Xl
(B) AFTER THE ROTATION

Figure 4-7. First Rotation About the Y-Axis in Helmholtz’s System
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900

o’
W
\)
FRAME E
X, AME £1
\
Xl
(A) BEFORE THE ROTATION
Y2
Y2
FRAME E,
> X,
@
Z, =2,
Z2
(B) AFTER THE ROTATION

Figure 4-8. Second Rotation About the Z;—Axis in Helmholtz’s System
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Y, Y
A A
FRAME E,
A
i X, S
Z,

(A) BEFORE THE ROTATION

Y3

Y; AXIS IS OUT OF PLANE

FRAME Ej
v '
Z3 Z3
(B) AFTER THE ROTATION

Figure 4-9. Third Rotation About the X,-Axis in Helmholtz’s System
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4.3 ANGULAR ROTATIONS DO NOT COMMUTE

As briefly discussed in Section 1.2, adding two vectors, V; and V;, we found out that Vi + V,
=V, + V; as shown in Figure 4-10:

4—— PARALLELOGRAM

That is, vector motion (addition) commutes. In contrast, the first two rotations of Fick’s sys-
tem (Zg—axis rotation followed by Y ;—axis rotation) do not result in the same orientation produced
by the first two rotations of Helmholtz’s system (Y ¢—axis rotation followed by Z;—axis rotation) for
the same amounts of the angular rotations, as repeated below in Figure 4-11, copied from Figures 4-5

l
Figure 4-10. Addition of Two Vectors
and 4-8.
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3
!( @ > X,
2 Z, =12,

ORIENTATION OF EYE FRAME AFTER THE ORIENTATION OF EYE FRAME AFTER THE
FIRST ROTATION ABOUT Z-AXIS ROTATION  FIRST ROTATION ABOUT Y~AXIS BY 90°
BY 900 FOLLOWED BY THE SECOND FOLLOWED BY THE SECOND ROTATION
ROTATION ABOUT Y4-AXIS BY 90°INFICK'S ~ ABOUT Z;-AXIS BY 90° IN HELMHOLTZ’S
SYSTEM (SEE FIGURE 4-5). SYSTEM (SEE FIGURE 4-8).

Figure 4-11. Comparison of Eye Frame Orientation of Fick’s System and
Helmbholtz’s System After the Second Rotation

Mathematically, this means that for any Vectors V; and V,, V, + V, = V, + V,. But, for
Rotation Matrices R; and R,, generally RjR, # R,R;. That s, the rotation corresponding to R;
followed by the rotation corresponding to R, is not the same as R, followed by R. Thatis, R; and
R, do not commute. This is discussed in Section 5.

Although finite rotations may not be considered as vectors and thus do not commute, infinitesi-

mal rotations may be considered as such. That is, in the limit, as the angle of rotation becomes very
small, Rotation Matrices commute as does vector addition. This is discussed in Section 7.
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SECTION §

THE ROTATION MATRIX

In the following pages, we will derive the Rotation Matrices for the three basic rotations around
the Z—-axis (yaw or horizontal rotation), the Y-axis (pitch or vertical rotation), and the X—axis (roll
or torsional rotation). Any 3D rotation in space can be produced by a combination (multiplication)
of these basic rotations.

5.1 BASIC ROTATION AROUND THE Z-AXIS

Consider a vector r in an orthogonal Frame A with components X, ya, and z, as shown in
Figure 5-1.

Zy

Ya

Figure 5-1. Frame A with Vector r

Frame B, which is initially coincident with Frame A, is rotated about the common Zp
= Zp—axis counterclockwise by an angle 0z as shown in Figure 5-2. The same vector r has
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components Xg, yp, and zg in Frame B. Our goal is to find a relationship between X, ya, Z4 and X,
ys, zp of the same vector r.

Let rp (in Figure 5-4) be the projection of the vector r in the Y-Z plane of both frames.
Decomposing the components of rp in Xa, Ya, and Xp directions, we get Figures 5-3 and 5-4. We
have a pair of identical right triangles with hypotenuse x4, and another pair with hypotenuse y, in
Figure 5-4.

By inspection, we get, from Figures 5-3 and 5-4:

X = X, 05867 + y,sin6, (5-1)
Since y, cos 6; = yg + x,sin 6,5, we get:
YB = Y €08 07 — x, sin 6,
= — X, 8in 67 + y, cos 65 (5-2)

Since the Z,~axis coincides with the Zg-axis,

Zg = Z, (5-3)

Figure 5-2. Frame A is Rotated to Frame B about the Z-axis by Angle 6,
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Ya

Figure 5-3. Components of r in Frame A decomposed
into components in Frame B (see Figure 5-4)
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Xy, = a = dg yo = ad = jg Ip = ag
ai = x,cos 6, fg = y,sinf, ed = x,sin0;, ac =y, cosb,
Xxg = ah = ai + ih = ai + fg = x,cos0, + y, sin6, Equation (5-1)

yg = ab = ac —bc = ac —ed = y,cos0; — x,sin6, Y
B

= —X,8inf; + y,cos0,  Equation (5-2)

rp (Xs Ya, 0)

Ip:

rp (xB’ YB, 0)

* POSITIVE zp = zg AXIS POINTS
POINTING OUT OF PAPER

Xp

Xa

~

Figure 5-4. Components of rp in both Frame A and Frame B
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XA
The coordinates x4, Ya, z4 for r in Frame A may be represented either as a column vector [%’A]
A

or asTow vector [X4 ya zg]. Similarly, the coordinates xg, yg, zg for rin Frame B may be represented
XB
either as %’g or as [Xg Vs Zz).

If we use column vector representation for components, we get from Equations (5-1) to (5-3):

Xp cos; sinb, O XA
YB| = |-sinfz; cosb; O |Ya (5-4)
ZB 0 0 1|2

By denoting column vectors by:

A A B B
rt = %’2 cand r® = %’g (5-5)

and denoting the Coefficient Matrix in Equation (5-4) by C3B, (from Frame A to Frame B), we have

cos 6, sinB; O Cy Ci Ci
C?\ =|-sinB; cosB, 0 = |[Cy Cyp ©Cy (5-6)
0 0 1 Gy Gz Gy
It follows:
r8 =CBr# (5-7)

Superscript B in rB and Superscript A in r# indicate the frame in which we have resolved the
vector.

The matrix Cﬁ in Equation (5-7) transforms the coordinate of a vector expressed in one frame
(Frame A) to another frame (Frame B). Therefore, it is called the “Coordinate Transformation
Matrix.” It is also called “Rotation Matrix” because it shows the effect of rotation of one frame
(Frame B) relative to another (Frame A). It is also called “Direction Cosine Matrix” because the

2
cates a transformation from A to B, or from the subscript to the superscript.

elements of the matrix are all cosines of angle 6 [sin B = cos (-JE - 6) ] . The notation C indi-
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The determinant of CE in Equation (5-7) denoted by |C) is

cos0, sin 0, 0
|c§] = |-sin 6, cos B, 0
0 0 1

= c0s20, — (— sin?8,)

It turns out that the determinant of any Rotation Matrix is always equal to 1.

Reversing the rotation process, the Frame B is rotated about the common Z 5 = Zp—axis clock-
wise by angle 0,, bringing the Frame B back to position of coincidence with Frame A, as shown in
Figure 5-5, thus reversing the process described in Figure 5-2.

¥B YB
Z, =Zp 5 ypsinBz
z
Ya
ypcos 6y
xgcos 0y
67
XB
XB sin ez
XA
Xp

Figure 5-5. Frame B Rotated Clockwise Back to Frame A

Knowing 6, we want to determine X,, Ya, Za in Frame A of the vector r in terms of xg, yg, and
zg of r in Frame B.
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Summing components in X, Ya and Z4 directions:

X4 = Xgcosf; — ygsinfy (5-9)
ya = Xgsinfz + ypcos0, (5-10)
Z, = Zp (5-11)

Note that the ( — ygsin 62) term in Equation (5-9) is negative because it is in the direction of
negative X s—axis direction.

If we use column vector representation for the components, we get from Equations (5-9),
(5-10), and (5-11):

XA cosB, —sinB, O] |xp
ya| = |sinB; cosB, O||yg (5-12)
Zy 0 0 1}|zp

Using the notations given in Equation (5-5), and denoting the Coefficient Matrix in Equatlon (5-12)
by CA, (from Frame B to Frame A), we have:

cosB, —sinf, O

C% = |sinB, cosB, O (5-13)
0 0 1
It follows that
A - Cﬁ‘ rB (5-149)

Substituting Equation (5-7) into Equation (5-14) for rB, we have

rd = CpCBrA (5-15)

Since rA is equal to itself, Equation (5-15) indicates that Cﬁ Cﬁ must be the Identity Matrix:
1 00

CpC®=1=10 1 0 (5-16)
0 0 1

This makes sense geometrically because Frame A is rotated to Frame B by CZ, and then
Frame B is rotated back to Frame A by C‘ﬁ. Therefore, Frame B is identical to or coincident with

5-7
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Frame A. Note that the second rotation denoted by Cg is multiplied from the left. This occurs
because the coordinates of the vectors are represented in column vector format as shown in
Equation (5-5). We may confirm the validity of Equation (5-15) analytically by direct substitution:

Using Equation (5-13) and Equation (5-6):

[cos®, —sinB, Of[ cosB,
Cﬁ Cg = |sin 0, cosB, O}f[-sinB,
0 0 1 0

e

cos?0, + sin? 6,

= |sin 6, cosB, — cosO, sinB,

O = O
—-0 O

which validates the conclusion of Equation (5-16).

cos B, sinB, — sinB, cos O,
sin? 0, + cos? 6,

0
0
1

(5-17)

Referring CK given Equation (5-6), if we exchange its rows and its columns, that is, if we take

B : B B\T B\T _ (A
the transpose of C,, then by denoting the transpose of C by (C A) , we find (C A) = Cg. That

is,

[ cosB, sinB, O T
[Cﬁ]T = |-sinB, cosB, O
0 0 1

[cosB, -sinB, O
= |sin 6, cos 0,
0 0

—_— O

= Cﬁ‘
which is the same as CQ given in Equation (5-13).
Substituting Equation (5-18) into Equation (5-16),

e8] cB =1

5-8
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Now substituting Equation (5-14) into Equation (5-7):

3 = CcBchrB (5-20)
Since rB is equal to itself, Equation (5-20) requires:

cBcg =1 (5-21)
Now, substituting Equation (5-18) into Equation (5-21) for C‘ﬁ‘:

czlcy =1 52)

-1
By definition, the inverse of C denoted by, C~! = (CB) "mustsatisfy C~!C = cC™! =1,
or it must satisfy

[cBl™ 3 = cRlcR) =1 5-23)
From Equation (5-19) and Equation (5-22):

[cB] g = cr[cy] =t (5-24)
Comparing Equation (5-23) and Equation (5-24):

(8] = [ca)™ (5-25)
Equation (5-25) states that the inverse of CR 1s equal to the transpose of C‘E.

For any Rotation Matrix C that transforms the coordinate of one orthogonal frame to another
orthogonal frame, it is always true that

cT=c™! (5-26)
A matrix that satisfies Equation (5-26) is called an Orthogonal Matrix.

This is very convenient because the determination of C ~1, which is generally complicated, may
be computed simply by exchanging the rows and columns of C, or by flipping the matrix around the
diagonal-axis for an Orthogonal Matrix.

From Equation (5-24) we have, using C for CE:

CTc=1=cCT _ (5-27)
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Using the notations defined by the right side of Equation (5-6) for C2, we have

Cii Cp Ci3l [Ci Gy Gy
CCT = {Cy; Cpn Cyu| |Gy Cp Cyul=1 (5-28)
Cs1 Gy Cs3| [Ciz Cp Gy

Equation (5-27) or Equation (5-28) is called the orthogonality condition. Although Equa-
tion (5-27) is derived from a special case, it is true for all Orthogonal Matrices. It is used to normal-
ize and orthogonalize the C matrix, in case the elements C;; determined by measurements or com-
putations deviate from the condition specified by Equation (5-27) or Equation (5-28). In that case,
this is geometrically equivalent to non—orthogonal frames. For example, Equation (5-28) is often
used to orthogonalize the eye coil field and to correct for measurement errors. (See Sections 11 to
13.)

5.2 Z~AXIS ROTATION USING ROW VECTORS

If we represent the coordinate of the vector (r®)T by a row vector [xz ya za] in Frame A and
the coordinates of (rB)T by a row vector [xg yg zg] in Frame B, we get from Equations (5-1) to (5-3):

cosB, -sinB, O
[XB YB ZB] = [XA yA ZA] sin 82 ({0 BZ 0 (5-29)
0 0 1

In view of the definition given in Equation (5-5):

T
XB
(xs ¥B z8] = '\ng] - [‘B]T (5-30)
- T
XA T
Xa Ya za] = zﬁ] = [r*] (3-31)

From Equations (5-29) to (5-31):

T T
[rB] — [rA] RR (5-32)
where
cosB, -sinB, O R;; Ry Rz
RB = sinB, cosB, 0] =|Ry; Ry Ry (5-33)
0 0 11 |Rsi Ry Ry

5-10
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Comparing RR in Equation (5-33) with Ci in Equation (5-6), we note that Rﬁ is equal to the
transpose of CR:

T
R} = [C}] (534
B BT
CE = [RE] (5-35)
From Equation (5-33):
cos®, -—sinB, O
IRRI = [sin 0, cosB, O
0 0 1
= cos20, + sin?6, = 1 (5-36)
It follows from Equation (5-8) and Equations (5-34) through (5-36),
ICl=|CT =R =RT=1 (5-37)

Perhaps for historical or implementation-related reasons, the eye movement community
seems to prefer the R matrix (described in Equations (5-29) through (5-33)) corresponding to row
vector representation of coordinates, while virtually all other scientific and engineering communi-
ties prefer the C matrix (described in Equations (5-4) through (5-7)) corresponding to column vector
representation of coordinates.

5.3 BASIC ROTATION AROUND THE Y-AXIS

Next, we consider the counterclockwise rotation around the common Y-axis of Frame B rela-
tive to Frame A by 6.

Following exactly the same procedure as before, we get
Xg = X5 080y + y,0 — z,sinfy
Yp = Xp0 + y, +2,0

Zp = X, sinby + y,0 + z, cos By ' (5-38)

5-11




or

cosH
Xp Y
B sin By

NSWCDD/MP-99/17

0 -sin By
1 0
0 cos Oy

It follows, using notations given in Equation (5-5),

B _ ~B.A
r—CAr

in which C is given by:

cosBy O
cB=| 0 1
sinBy 0

for Y-axis rotation by Oy,

If we use row vector representation, we get from Equation (5-38):

—sin BY

0
cos Oy

cosBy O
[XB ¥B ZB] = [XA Ya ZA] 0 1
—-sinfy, 0

or, in terms of notations defined in Equation (5-5):

5] = [4] B2

where
cosBy 0
B _
R} = 0 1
-sinBy 0O

sin Oy
0

cos Oy

we note, comparing Equation (5-43) with Equation (5-40):

RE =[] =

as before.

5-12
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XA:I
YA
Zp

sin By
0
cos By

(5-39)

(5-40)

(5-41)

(5-42)

(5-43)

(5-44)
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5.4 BASIC ROTATION AROUND THE X-AXIS

Finally, we consider the counterclockwise rotation around the (originally) common X-axis
of Frame B relative to Frame A by 6.

Following exactly the same procedure as before, we get
XB = XA+yAO+ZAO
Y = X50 + y,cos0yx + z, sinBx

zg = X,0 — y,sinfy + z, cos6 ©(5-45)
B A A X T Zp X

From Equation (5-45),

B 1 0 ) 0 A .
Y| = {0 cosBx sinOx| |[yu (5-46)
Zp 0 -sinBy cosBx| [Za

r® =CBrA (5-47)

We may also express Equation (5-45), using row vector representation:

1 0 0

(X ¥B z] =[xa Yya za]|0 cos Ox —sin by
0 sinBx  cosOy

)" = [4] r® | (548)

Since [AB]T is equal to BTAT (see Appendix A), taking the transpose of Equation (5-47):

e = [cae]

T T T
[*] = [r*] [c3] (5-49)
Comparing Equation (5-49) with Equation (5-48), we conclude
T .
[ci] =R} (5-50)

as shown in Equation (5-34).

5-13
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Taking the transpose of Equation (5-50):
T
lle2"] = [reT
Since [CE]T = C§ and [CQ]T = CB, we have:
cB = [rE]' (5-51)

as shown in Equation (5-35).

That is, Cﬁ corresponding to the column vector representation is the transpose of Ri corre-
sponding to the row vector representation.

5.5 COLUMN VECTOR REPRESENTATION OF TWO
CONSECUTIVE ROTATIONS

Now suppose rB in the Frame B is transformed to rC in Frame C (not to be confused with
Rotation Matrix C). Then, using the column vector representation:

rC = Cg rB (5-52)
Substituting Equation (5-47) in Equation (5-52) for rB:
rC = Cg [CR rA]
=c§ cB rA (5-53)
It is also true that
r©=c§ rt (5-54)
From Equations (5-53) and (5-54), we get:

c$ = c§ck (5-33)

Note that in Equation (5-55), the matrix Cg corresponding to the second rotation is multiplied
from the left, and that, while the rotations are sequential and might appear additive, they are repre-
sented mathematically by multiplication of matrices. Also, note that sequence in which the rotations

take place is important since, in general, C§ CE = CB CS.

5-14
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5.6 ROW VECTOR REPRESENTATION OF TWO
CONSECUTIVE ROTATIONS

Next, using the row vector representation for the transformation from Frame B to Frame C:
T T
[r¢] = [r®] RS (5-56)
Substituting Equation (5-48) into Equation (5-56) for (rB)T :
T T
| [rc] = [[rA] RR]Rg ‘
T
= [r*] RERS (5-57)
Since it is also true that
T T
] =[r*] &S (5-58)

we conclude from Equation (5-57) and Equation (5-58) that when Frame A is rotated to Frame B,
and Frame B is rotated to Frame C, the rotations from Frame A to Frame C equate to:

RS = RERS (5-59)

Note that in Equation (5-59), the matrix Rg for the second rotation based on the transformation

of row vectors multiplies from the right, unlike the case of Cg which multiplies from the left as
shown in Equation (5-55).

Using similar procedures, we can show that when Frame C is rotated to Frame D:
= C ‘
CcR =c2c§cB (5-60)
while

RR = RER{R2 (5-61)
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Taking the transpose of Equation (5-60), and using the formula [AB]T = BTAT (see
Appendix A),

cB]" = [cReg ez
= [c2]" [cRcg]
= [CE]T [CE]T [CI@]T (5-62)

Using Equation (5-34) and its extension in Equation (5-62):

RD = RERERP (5-63)

which is identical with Equation (5-61).

5-16
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SECTION 6

ROTATION MATRICES FOR FICK’S SYSTEM AND
HELMHOLTZ’S SYSTEM OF EYE ROTATIONS

In the following pages, we will derive the resultant Rotation Matrix corresponding to the three
consecutive Euler angle rotations according to the Fick’s system (discussed in Section 4.1). We will
also derive the resultant Rotation Matrix corresponding to the three consecutive Euler angle rota-
tions according to the Helmholtz’s system (discussed in Section 4.2).

We assume the Head Frame and the Eye Frame are initially aligned with their X—axes pointed
straight forward, their Y—axes horizontally left, and their Z-axes vertically upward.

The Rotation Matrices for the three basic rotations around the Z—axis (yaw or horizontal rota-
tion), the Y—axis (pitch or vertical rotation), and the X-axis (roll or torsional rotation) was derived
in Section 5.

6.1 ROTATION MATRIX FOR FICK’S SYSTEM

In Fick’s system of Euler Angles, the first rotation of the Eye Frame is the Zyg—axis of the
Head Frame; this results in the Frame F1 (F for Fick). The second rotation of the Eye Frame is about
the Yg;—axis of the Frame F1; this results in Frame F2. The third rotation of the Eye Frame is about
the Xgo—axis of Frame F2; this results in the final orientation of the Eye Frame in Fick’s system.

FICK ROTATIONS: (see Section 5)

1) First rotation about Zg—axis by 6z:

Head Frame H becomes Frame F; (F for Fick)
rfl = cft M (6-1)

Using the X—axis rotation matrix:

Xpy c.os 6, sinB; o Xy
[%’g] = —s1(r)1 6, co; 0, (1) [%’;I] (6-2)
2) Second rotation about Ygi—axis by Oy:
Frame F; becomes Frame F; .
2 = CB F (6-3)

6-1
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Using the Y-axis Rotation Matrix:

Xp) cosBy ( -sinfy Xg|
)Z’Fz = 0 1 0 Y1
F2 sinBy 0 cosBy| | “F

Substituting Equation (6-1) into Equation (6-3):

F2 _ ~F2 F1 H

(6-4)

(6-5)

Notice that the matrix for the second rotation CE% is multiplying the matrix for the first rotation Cﬁl

from the left.

Substituting from Equation (6-2) and Equation (6-4) into Equation (6-5):

Yrl =] O 1 0 —sin B,

Xp) cosBy (g -sinBy cos 65
ZF2 sinby 0 cosBy 0

3) Third rotation about Xgy—axis by 0x:

Frame F, becomes Frame F3 or the Eye’s final Frame E.

E_ .F3 _ ~F3 _F2
r-=r —CF2r

Using the Z~axis rotation matrix:

Xg XE3 1 Oe . 06 F2
%’E = ¥F3 =10 CcOS X sin X y
E F3 0 -sinBy cosBy

Substituting Equation (6-5) into Equation (6-7) for rf2:

E _ F3 F2 F1 H

Notice again that Cg multiplies Cg% from the left.

6-2
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(6-6)

(6-7)

(6-8)
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Taking the transpose of Equation (6-13)
=] = [cE )
= [ [cx]’
or
] = [ RE (6-14)
Equation (6-14) may be written as
e Ye ze]=[*u yu zs] Rf (6-15)

T
where Rﬁ = (CE) is the transpose of the Coefficient Matrix Cﬁ of Equation (6-12) for the Fick’s
System, which is given below in Equation (6-16).

RE = [Cﬁ]T (6-16)

cos By cos@, —cos By sinB, + sinBysin@ycosO, sinBysin6; + cos Oy sinBycosh;
cosBysinB,  cosBycosB; + sinBysinBysinB; —sinByxcosB; + cos By sinBysinby

-sinBy sin By cos By cos By cos Oy

for the Fick’s system of Euler Angle Rotations. (This is the transpose (rows and columns exchange)
of the Coefficient Matrix of Equation (6-12).)

Now, taking the transpose of Equation (6-9) (see Appendix A):
T T
] = [cgcp g o
B3 2] oFL]
_[CFz CFI] Cx ]

= [ [cB] [cB cB]'

= (" [cB] [cB] [cB] 6-17)
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or
] = [ [RE RERE] (6-18)
or
[ = [ R
=[] RE | (6-19)

which is equal to Equation (6-14) and Equation (6-15).

6.2 ROTATION MATRIX FOR HELMHOLTZ’S SYSTEM

In Helmholtz’s system of Euler Angles, the first rotation of the Eye Frame is around the
Yy-axis of the Head Frame. This results in Frame H; (H for Helmholtz). The second rotation of
the Eye Frame is around the Zy;—axis of the Frame H;. This results in the Frame H,. The third
rotation of the Eye Frame is around Xjypp—axis of the Frame Hj. This results in the final orientation
of the Eye Frame in Helmholtz’s system.

HELMHOLTZ ROTATIONS: (see Section 5)
1) First rotation around the Yg~axis by Oy :

Frame H becomes Frame Hj :

rHl = cHl H (6-20)
Using the Y-axis rotation matrix:

Xg1 cosBy (o -—sinBy Xg
Yai | =] O 1 0 YH (6-21)
|:ZH1:| sinfy 0  cosBy [ZH]

2) Second rotation around Zyy—axis by 6z:
Frame H; becomes Frame Hj

ri2 = ciz (6-22)
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Using the Z-axis rotation matrix:

X1 cos O2 sinb;  0frxy,
YH2 | =|-sin Bz cosB; Of|Ym (6-23)
Zm 0 0 1| Zn1

Substituting Equation (6-20) into Equation (6-22):

ri2 = cit ch M (6-24)

Substituting Equation (6-21) and Equation (6-23) into Equation (6-24):

Xin cosB, sinb; g][cosBy (¢ -—sinby Xy
BZ’H2 =|-sin6; cosB; O 0 1 0 %’H (6-25)
H2 0 0 1|[sinBy O  cosBy|[“H
3) Third rotation around Xy,—axis by 6x.
Frame H; becomes Frame H3z or the Eye’s final Frame E.
rf = =i} 2 (6-26)

Using the X~axis rotation matrix:

Xg 1 0 0 Xm
%’E = |0 cosBy sinBx %’Hz (6-27)
E 0 _sin By cosBy H

Substituting Equation (6-24) into Equation (6-26):

rf=Ccpy cii ci! o (6-28)
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SECTION 7

ROTATION MATRIX FOR SMALL ANGLES

Although the Rotation Matrix does not commute for finite angles, it does commute for very
small angles for which the approximations sin =0, cos =1, and 80=0 are justified. Consider

T
the Rotation Matrix Cﬁ (ot RE, which is (CE) ) of Fick’s system. Using the above approxima-
tions, we have for small angle rotations of Fick’s system,

1 62 —0y
CII?I = —ez + GXBY 1+ GXGYGZ eX (7-1)
BXBZ + GY —ex + BYGZ 1

Since for very small angles 0x0y=0, Ox0y Gz~0 0x06z=0, and By06z=0, it follows from
Equation (7-1):

1 6z -6y
CE=|-6z 1 6 | (7-2)
By -6 1

for Fick’s system.

T
Now, consider the Rotation Matrix Cﬁ (not RE, which s (Cﬁ) ) of Helmholtz’s system using
the approximations sin 8=0, cos 6=1, and 80 =0 for small angle rotations:

1 6, -0y

CII?I = —BZ + GXBY 1 GZGY + 9X (7-3)
By0, + By —Bx —By8,8y + 1

for Helmholtz’s system. Note that Equation (7-3) is different from Equation (7-1). However, with
approximations 856y = 046, = 6,6y, = 0,06,0, = 0, it may be reduced to:

1 67 By
cE=1|-6; 1 & | (7-4)
By -0x 1

which is identical to Equation (7-2). Equation (7-4) is the Rotation Matnx for the Helmholtz’s sys-
tem with angles small enough to justify sinB = 6 and cosf =

7-1
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Thus, for small angles,

Cﬁ (for Fick’s System) = CE (for Helmholtz’s System)

=|-0z 1 Bx (7-5)
Oy -Ox 1

That is, for small angles, the sequence of rotation does not matter, and; therefore, the Rotation
Matrices commute, or

Cr3 (6x ) Ci (6y ) Ci(82) = G (0x ) Ciit (82 ) CH' (6y)

making the final eye positions equivalent in both Helmholtz’s and Fick’s systems for the same
amount of angular rotations. That is, for the separate rotations C;,C, and Cj:

C,C,C3 = CC4C, = C,C,C5 = C,C4C; = C5C,C, = C5C,C, (7-6)

for small angle rotations.
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SECTION 8

A DIFFERENT VIEW OF ROTATION MATRIX

Consider a vector r has components X4, ya and z4 in Frame A, and components xp, yg, and
zpin Frame B. Frame B is displaced counterclockwise from Frame A (reference frame) by a rota-
tion angle 6z about the common Z—-axis. For this case, we found out the Rotation Matrix relating
r& =[xa ya za]lT torB = [xp yg zp]T is given by (refer to Section 5):

Xp cosb; sinB; O] [xp
yg| = |-sin6; cosB; O] [ya (8-
Zp 0 0 1 Zy

Now instead of rotating Frame B relative to Frame A, a vector r; in Frame A with coordinates
X1, Y1, and z; is rotated clockwise about the negative z—axis, according to the right hand rule to a
new position rp in the same frame with coordinates x3, y7, and z, by the angle 6z. This means
r; is moved downward on the X-Y plane as shown in Figure 8-1.

Y
A rl, !l‘ll =T
Y1
r2, Irzl =T
¥2
@ > X

(Z-AXIS POINTS OUT OF PAPER) Z

Figure 8-1. Clockwise Rotation of Vector r;

Referring to Figure 8-1, 0 is the angle between r; and rp. ¢ is the angle between r; and the
X-axis. Note that r; and r; have the same magnitude, which we denote by r.

It follows:

r cos ¢ (8-2)

X1

y1 =71 sin ¢ (8-3)
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Using the trigonometry formula for cos (¢—6) and sin (¢-0):
r cos (¢-0)

r(cosd cosb + sind sin6)

X2

cosO (rcosd) + sinO (rsind)

(cos®)x; + (sin®)y; (8-4)

Using Equation (8-2) and Equation (8-3):

y2 = 1 sin(¢-0)
= r(sind cos® — cosd sinB)
= c0s0 (rsind) — sinB (rcosd)
= (cosO)y; — (sinB)x;
= —(sin®)x; + (cosB)y; (8-5)
21 =2 (8-6)
It follows:
Xy cos® sin@ O |[x;
Yol = |-sin® cos® O] |y, (8-7)
z, 0 0 1 z,

Comparing the Coefficient Matrix of Equation (8-7) with that of Equation (8-1), we notice that
they are identical.

Generalizing the above results, the Rotation Matrix corresponding to the rotation of one frame
relative to the reference frame is the same as the Rotation Matrix corresponding to the rotation of
a vector in the opposite direction (with same angle of rotation) within the original reference frame.
Most of the time, the Rotation Matrix is used in the former context. However, if it is used in the latter
context, it should be made explicit to avoid confusion.
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SECTION 9

DETERMINATION OF ROTATION ANGLES FROM
ROTATION MATRIX OF FICK’S SYSTEM

Until now we have defined angular rotations and, from these rotations, have determined the
| elements of a Rotation Matrix. Now we reverse the process, and assume we have a Rotation Matrix
and wish to obtain the rotation angles that correspond to the matrix.

9.1 ANGLES OF FICK’S SYSTEM MATRIX
(SOME OF THIS SECTION HAS BEEN DISCUSSED IN AN EARLIER SECTION)

Assume the Eye Frame is rotated to another orientation by rotating the initial orientation
around its X-axis by angle T (for Torsion). The corresponding Rotation Matrix Cx(T) is given

by:

1 O 0
Cy(T) =| 0 cosT sinT 9-1)

0 -sinT cosT
which is Equation (5-46).

The Rotation Matrix Cy (V) around the Y—axis by angle V (for vertical motion of the Eye—axis)
is given by:

cosV 0 —=sinV

Cy(y=f 0 1 0 ©-2)
sinV. 0 cosV

which is Equation (5-39).

l The Rotation Matrix Cz (H) around the Z—-axis by angle H (for horizontal motion of the Eye—
| axis) is given by: '

) cosH sinH O
C,(H) = -sinH cosH 0 (9-3)
0 0 1

which is Equation (5-4).
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The Equation (9-7) is the final Rotation Matrix of Fick’s system. Equation (9-7) is the same as the
Coefficient Matrix derived in Equation (6-12). From Equation (9-7):

Cis = —gsinV =sin(— V)

or

or

\% = —sin~! Cp4 (9-8)

Thus, we can determine the value of V from the value of Cy3 determined from experiments.
Next, from Equation (9-7):

C;, =cosVsinH

. _ C12
sinH = sV
or
C
H =sin~! [-CO%] (9-9)

where cos V is determined using V given in Equation (9-8). Note that, both in Fick’s system and

Helmholtz’s system, all angles of eye rotations are physiologically constrained to be much less than
90°. Therefore, cos V will never be 0.

Now, from Equation (9-7):

C33 = cosT cosV

or
— 33
cosT = o5V
or
C
T = cos™! [60:;] (9-10)
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The Torsion angle T may also be determined from Equation (9-7):

Cy; =sinT cosV

: Cas
sinT = sV
C
— cin-1 =23 i
T sin™ " —=5 (9-11)
Now we know C = RT.
That is:
Ci;i Cpp Cyps Ry Rz Ry
Cy Cp Cuf=]Ry Ry Ry 9-12)
31 Cp Cy 31 Ry Ry
From (9-12), we get:
Ci3 = Ryy; Cpp = Ryy; Cp3 = Ryp, G55 = Ry (9-13)
From Equation (9-9) and Equation (9-13),
R
= an-l 21
H = sin™ (55 (9-14)
Similarly,
R . R
T = cos N gpas) or T =sin"( 5o (9-15)
V = —sin™! Ry, (9-16)
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SECTION 10

DETERMINATION OF ROTATION ANGLES FROM
ROTATION MATRIX OF HELMHOLTZ’S SYSTEM

10.1 ANGLES OF HELMHOLTZ’S SYSTEM MATRIX

By definition, in the Helmholtz’s System, the sequence of rotation is: Y-axis rotation, fol-
lowed by Z—axis rotation, followed by X—axis rotation. Thus, the final Rotation Matrix C in the
Helmholtz’s System is given by, using the notations described in the previous section:

C = Cx(T)CL(H)Cy (V) (10-1)

Now: .

cosH sinH 0 cosV 0 -sinV

Cz(H)Cy(V) = |-sinH  cosH 0 0 1 0 (10-2)
0 0 1 sinV 0 cosV
cosHcosV sinH -—-cosHsinV
= |—sin HcosV  cosH sinHsin V (10-3)
sinV 0 cosV
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Next,

C,, =cosTcos H

Cy
cosT = cosH
C
T =cos! =2

NSWCDD/MP-99/17
|
' cosH

Torsion T may also be found from:

Cs, = —sinT cos H
Cs, = sin (-T) cos H
(1) = o2

(-T) = sin™! %

Now, we know:
Rii Rz Rys Cii Gy Gy
Ryt Ry Ryl =]Cn Cp Gy
13 Gz Gy

From (10-10):

Ci2 = Ryp3 Cy3 = Ryq5 Cpp = Ryp; C5p = Ryg

It follows from (10-6) to (10-9), using (10-11):

— -l
H = sin™ Ry,
R
son — 31
V = —sin!
cosH
R R
_ 2 .1 o3
T=cos! =22 or T = —sin”} —2 |
cosH cosH

10-3/(10-4 blank)
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SECTION 11

ORTHOGONAL MATRIX AND ORTHOGONALITY CONDITION

In Section 5, we have shown by means of a simple example based on one axis rotation that the
Coordinate Transformation Matrix (Rotation Matrix) from Frame A to Frame B, denoted by

CE, has a property that its inverse is equal to its transpose. That is,
) = (}) a1-1)
where Cﬁ is an Orthogonal Matrix.
It follows:
(CB)(CB)" = CB(cB) =cBcp=cE=1 (11-2)
Also,
(k= () =cpch=c=1 119

In this Section, we will show that Equation (11-1) is valid for any arbitrary orientation of one
frame relative to another frame, regardless of how frames may have reached the mutual orientation.

Consider two frames, Frame A and Frame B. Frame A has Xj, Ya, and Z 4 axes with unit
vectors I, J, and K, respectively. Frame B has Xg, Yg, and Zg axes with unit vectors i, j, and K,
respectively. An arbitrary vector has components x4, ya, and z in Frame A, and components xg,
yB, and zg in Frame B as shown in Figure 11-1. .
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Figure 11-1. An Arbitrary Vector with Components Expressed in Frames A and B

We want to determine Xp, yg and zg of Frame B in terms of X4,y ,,andz, of Frame A. First
consider xg, which consists of,

xg = (component of x, along i or Xg axis)
+ (component of y, along i or Xp axis)
+ (component of z, along i or X axis)

Xp = Xpcos (L,I) + y, cos (i,J) + z5cos (i,K) (11-4)
in which cos (i, I) is the cosine of angle formed by unit vector i and I, and so on.

Similarly,
yp = Xpc0s (j,I) + ypcos (j,J) + z5cos (j,K) (11-5)

zg = x,c08 (k,I) + yscos (k,J) + z, cos (k,K) (11-6)
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From Equation (11-4) to Equation (11-6)

Xp cos(i,I) cos(i,J) cos(i,K) B Xp
yg{ = [ cos(,I) cos(j,J) cos(j,K) Ya _ (11-7)
Zp cos(k,I) cos(k,J) cos(k,K) R Zy

The Coefficient Matrix of Equation (11-7) above is called Direction Cosine Matrix (which
is also called Rotation Matrix or Coordinate Transformation Matrix) because all of its elements
are cosines of the angle between directions of axes of two different frames.

By definition as we discussed in Section 1,

i-I=|j [ cos (i,I) = cos (i,I)
i-J=I|i [J] cos (i,J) = cos (i,J),etc.

since i, j, kand I, J, K are unit vectors.

It follows that Equation (11-7) may be written as

xg] (i-1 i3 i-K)° (x4

ypl =i I i-J 'K Ya (11-8)
Zp k- I k-J k'K R Zp

or
B

XB Cn Ci2 Cis XA

8| = |Cxn Cp  Cp Ya (11-9)
zp Cy Cs, Css A L%

in which the meaning of Cjj, Cy, etc. are obvious by comparing Equation (11-7) and Equa-
tion (11-8) to Equation (11-9).

We may summarize Equation (11-8) and Equation (11-9) by

XB XA
yg| = CB[ya
ZB ZA
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re =

where CR represents the Coefficient Matrix on the right side of Equation (11-9).

Next, we reverse the process. We want to find X,y 4,2, in terms of Xg,yp, Zg.

Xp =

XA
Similarly,
Ya =

Zp

NSWCDD/MP-99/17

B ,A
Chr

(component of xg along I or X, axis)
+ (component of yg along I or X, axis)

+ (component of zp along I or X, axis)

cos (i,I) xg + cos (j,I) yg + cos (k,I) zg

cos (i,J) xg + cos (j,J) yg + cos (k,J) zp

cos (i,K) xg + cos (j,K) yg + cos (k,K) zg

From Equation (11-12), Equation (11-13), and Equation (11-14):

(x4] [cosGD cosGD coskDY [xg
yal = | cos(,J) cos(,J) cos(k,J) Y8
Zy cos(i,K) cos(j,K) cos(k,K) 5 Zp
L J -
(x,) (i-1  j-1 k-1 (xp
Yal=|i-J j-J k-J VB
gZA, k1-K J-K k-KB Zp
It follows

Xp Xp
Yal = C5 1Y
Zp Zp

or
A =Cj rB

11-4
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where Cﬁ represents the Coefficient Matrix on the right sides of Equation (11-15) and Equa-
tion (11-16).

Comparing CQ given in (11-15), with CR given in (11-8), we note that C"g is equal to the
Transpose (rows and columns exchanged) of Cﬁ . That is,

Cg = (CHT and (CB) = (CHT. (11-18)
Substituting Equation (11-10) into Equation (11-17):
b =C8 rP
= C4 CB rA. (11-19)
Sincer® = I rA where I = Identity Matrix, we conclude:
csCl=1 (11-20)

Using Equation (11-18) in Equation (11-20):

(CHT (CB) =1. ~ (11-21)
Since (CH)™ (CB) =1, (11-22)
we conclude:

€ =CHT. (11-23)

Since Equation (11-23) is true for any two Orthogonal Rotation Matrixes, we have, dropping
subscripts and superscripts: C™! = CT.

It follows:

Clc=cCclc=1 (11-24)
CCl=ccT=1 (11-25)

Although Equation (11-18) through Equation (11-23) were shown in Section 5 using a single
axis rotation, we are confirming them here for general case.
Cyy Cpp Gy
Thus, for C = |Cy; Cx Cp (11-26)
Cy1 Gz Gy
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we have, using Equation (11-24):
Ci Gy GCal(Cy

cTc = |C;p Cxn Gyl |Cy
13 €23 Cs3] |Cyg

Carrying out matrix multiplication:

(1 0 O
={0 1 0
0 0 1

Equating (1,1) elements:
C%l + C%l + C%l =1
Equating (2,2) elements:
Ch+Ch+Ch=1
Equating (3,3) elements:
Cly +C3; + C5; =1
Equating (1,2) elements:
CiCia + CyCp + C51C5, = 0
Equating (1,3) elements:

CiCis + CyCy + C5C55 =0

Equating (2,3) elements
C12Cy3 + CppCh3 + C35C33 = 0

(C2, + C2, + CY CiiCra + C3Cyy + C5,Csp
CTC = |CyyCyy + CCyy + C55C5  CF, + CF, + C, : ) 2
\C13C11 + Cp3Cyy + C33C5p Cy3Cp + C3Cyp + C55Cyy Cp3 + G35 + G55

OO =
[u—

0 (11-27)
1

C11Cy3 + € Cy3 + C5,Cs5
C15Cy3 + CCh + C55Cs;3

(11-28)

(11-29)
(11-30)
(11-31)
(11-32)
(11-33)

(11-34)

Referring to the matrix of CTC given in Equation (11-28), we note that its (2,1) element is iden-
tical to its (1,2) element; (3,2) element to (2,3) element; and (3,1) element to (1,3) element.
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If we use Equation (11-25), we have
Cii Cn Ci)[Chy Cy Gy

cCT = |Gy Cp Cul|Cp Cp Cj
Csi GCs Gy |G Cp Cy

1 0
=10 1 0]=1 (11-35)
0 1
which leads to the following relationships among the coefficients, sometimes called the redundan-

cy relationships.

It follows from Equation (11-35):

Ch+ChL+Ch=1 (11-36)

C3, +C% +C =1 (11-37)

C3,+C%,+Ci=1 (11-38)
Equatiﬂg (1, 2) elements:

C1Cay + C1pCyp + C13Cy3 =0 (11-39)
Equating (2, 3) elements:

C21C31 + CpCsy + Cy5C33 = 0 ~ (11-40)
Equating (1, 3) elements:

C1iC31 + C1,Cxp + Cp3Ca3 = 0 (11-41)

Equation (11-29) through Equation (11-34) or, equivalently, Equation (11-36) through
Equation (11-41) are results obtained from Equation (11-28) or Equation (11-35), repeated below:

Clc=ccT =1 (11-42)
which is called orthogonality condition.

When the Rotation Matrices are obtained experimentally or determined computationally with
computation errors, they generally do not satisfy Equation (11-42). In those cases, Equation (11-29)
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through Equation (11-34) or Equation (11-36) through Equation (11-41) are used to make the
Rotation Matrices satisfy Equation (11-42). That is, the equations “normalize” and “orthogonalize”
the Rotation Matrices.

The 3x3 Direction Cosine Matrix C has nine direction cosines. Six orthogonality relations
— Equation (11-29) through Equation (11-34) or Equation (11-38) through Equation (11-41), —
contain all nine elements. Therefore, these six equations may be solved for six elements in terms
of three remaining elements. This means there are only three independent parameters. Since we
cannot reduce the number of the independent parameters to less than three, making the number 3
the minimum number of independent parameters to specify the rotation, a set of three coordinate
is called generalized coordinates. Although there are a number of such sets of parameters available,
the most widely accepted are Euler Angles.

A more useful set of relationship than those given by Equations (11-39) through (11-41) fol-
lows from the orthogonality of the unit triads (i, j, k) and (I, J, K). By definition,

i=jxk j=kxi k=ixj (11-43)

Applying Equation (11-9) between (i, j, k) and (I, J, K),

i Ci Cpp Cp3) (I
il = |Cu Cxpn Cxu| |J (11-44)
k Gy Gy Gy |K

It follows from Equation (11-44):
i=Cjl+CpJ+C3K
J=Cyul + CypJ + C3K
k = C3I + C3pJ + C33K (11-45)

Using Equation (11-45) in Equation (11-43) for i = j X k:
CyI+CjLJ+C;3K

= (Cy I+ CpJ + CyK) X (C3; 1+ C3,J + C33K)

I J K
=|Ca Cpn Cxn|= (CpCs3 = C3p Cy3) T
Cii Gy G
+(Cy3 Ca; = Cp1 C33)J + (Cyy C33 = € C5y) K (11-46)
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Equating coefficients for I, J, K on both sides of Equation (11-46), we get:
Ci1 = CpCs3 — C35Cy3
Cra = Cp3Cy; = CyCxs

C13 S C21C32 - C31C22 (11-47)

Similarly we obtain from j = k X i:
Co1 = C3C3 — C1oCy3
Cyp = C11Cs3 = C51Cy3
Ca3 = C51C12 — C1iCyz. (11-48)

andfrom k=1 X j:
C3p = CpCys — CpCy3
Csp = CyCi3 — C11Cys

Now going back to Equation (11-32) and solving for C;;:

(C31Cpp + C3,C3y)

Cll = C12 :

(11-50)

If C12is 0, C1; cannot be obtained from Equation (11-50). However, it can be obtained from
the first equation (Equation (11-47)) without these restrictions. In this sense, Equations (11-47),
(11-48), and (11-49) are more useful than Equations (11-32), (11-33), and (11-34) because they
allow us to avoid singularities. '

11-9/(11-10 blank)
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SECTION 12
NORMALIZATION OF VECTOR AND ROTATION MATRIX

12.1 NORMALIZATION OF VECTORS
Given a vector r,

r=ix + jy + kz (12-1)

we want to normalize r so that its magnitude |r| = 1

That is, we require

Ir| = Jix + jy + ke|

= +y +H 2 (12-2)

Now define x', y',z', and r’ by:

' X ' y ' z
X=—; =—;Z=—-
DI B
r'=ix'+jy'+kz' A (12-3)
Then
7 I i 2 2 2
R R R R
LI R
_x2+y2+ 22
-
Ir]
_x2+y2+ 22 .
x2 + y2 + 22

It follows that

K| = [(x')z + (y')2 + (Z,)z] =1 (12-4)

which implies that r is normalized.
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12.2 NORMALIZATION OF MATRICES

For an Orthogonal Matrix:

Cyi Cip Cy3
C=1Cy Cp Cy (12-5)
Cy Gy G
such that
Cyp Gy Gy R;1 Ryz Rys
CT =|Ciy Cp Csp| =Ry Ry Ryl =R,
Ciz3 Cyp Gy R3; R3 Ry
we know if Equation (12-5) is errorless:
CCT =1 and CTC =1 (12-6)
or
Cii Ciz Cis| |Cii Gy Gy 1 00
Cs; Gy Cs311Cy3 Gy Cys 0 01
It follows from the above equation:
2 2 2 _
C+Cp+C; =1
2 2 2 _
2 2 2 _ -

Equation (12-8) is called Normalization condition.

In some cases, a Rotation Matrix may not obey Equation (12-6). The next paragraphs show
how to ensure that each diagonal element of CCT is equal to L.

Now, assume the Cy;’s in Equation (12-5) have errors.

We want to normalize the C matrix so that Equation (12-8) is satisfied.
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Now define Cgj, Cr; and Cg3 by:

' 11/2
2 2 2
Cg; 2 Chi + Cp + Cf5

: 11/2
CRZ a CJy + C3, + C3

- 12 12-9
Cps A [C3, + €2, + %] (12-9)

and also define Cqy,C1z and C'13 by:

C
C'h ——:;11
' Ci2
C'yy A_llu
, Cis
C'p5 A_;I (12-10)

where the symbol A denotes the definition.

It follows:

2 2 2 2 2 2
C11 + C12 + C13 _Cll + C12 + C13

2 reY) 2 > =1 (12-11)
Cr1 Ch+tCn+C5

[C11])% + [C12)? + [C3)? =

Define Cp1,Caz and Cas by:

Cpd =2 (12-12)
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It follows:

2 2 2
C21 + C22 + C23
[Cgral?

2 2 2

— C21 + C22 + C23
2 2 2
C21 + C22 + C23

[C21]? + [C)? + [Cp3)? =

=1

Finally, define Cs;, C3; and Cs3 by:
_ % G '3_C33

It follows:

2 2 2
C31 + C32 + C33
[Crs)?

2 2 2

— C31 + C32 + C33
2 2 2
C31 + C32 + C33

[C31]? + [C32)? + [C33)? =

Therefore, the new matrix C’ given by:

C'n C'12 C'ss
Cc =|C2 C=2 C»
C'31 C’sz C'aa

will satisfy Equation (12-8) with C;; replaced by C'ij, which means C' is normalized.

12-4
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SECTION 13

ORTHOGONALIZATION OF VECTOR AND ROTATION MATRIX

13.1 ORTHOGONALIZATION OF VECTORS

Given a set of three non—orthogonal vectors with a common origin, we want to find a set of
three mutually orthogonal vectors to form an orthogonal frame of reference.

That is, from three non—orthogonal axes x;, X; and x3, we want to find three orthogonal axes
Y1, y2 and y3. Figure 13-1 shows x; and xp which are not perpendicular to each other.

Figure 13-1. Two Non-Orthogonal Vectors x; and x,. -

Initially we choose y; to be X;, or x; =y;. Then we draw a perpendicular line from p, (the tip
of X3), to the xj line, and call the intersection of this line with x; line p'. Let
Op =y, andpp =y,.

Define k; by
y1 = k¥4

where K| is a scaling factor for y;.
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It follows from Figure 13-1, using vector addition:
X, =y1+y, =ky +¥,
From Equation (13-1):

Y2 = X; = kY,

Since y; is perpendicular to y,, we require thaty; -y, =0

or, using Equation (13-2):
Y1'Y2=Y1 (X —kyy) =0

It follows:

Y1 Y2 =YX~ Ky, "y, =0
which results in:

Y1 X

Yi°

k, =

Substituting Equation (13-5) into Equation (13-2) for kj:

Y1 X%
Y2= %~y h
- As a check to see if yj is perpendicular to y3:
Yi X

yl'Y2=y1‘(X2—3rl'TTIY1)

_ yi "% .
—yl'xz_yl-ylyl Y1

=Yy "X~y "X=0

(13-1)

(13-2)

(13-3)

(13-4)

(13-5)

(13-6)

(13-7)

(13-8)

which shows that y, as determined by Equation (13-6) is indeed perpendicular to y;. Now that we
found y, determined by Equation (13-6) is perpendicular to yj, our next task is to find y3 which is

perpendicular to both y; and y».

Referring to Figure 13-2, draw a perpendicular line from Q (the tip of x3) to the y; — y» plane,
and call the intersection Q. Drop a perpendicular line from Q'to Oy line and call the intersection

y1 Finally, draw a perpendicular line from Q'to Oy, line and call the intersection ya.

13-2
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13-3

Y3 Q
X3
Y2
O > Y2
Y3
yi
/ w0
Y1 '
Figure 13-2. Orthogonal Set of Vectors
We define kj and k3 by
¥1 = koy; (13-9)
and
y2 = ksy, (13-10)
where k; and k3 are scaling factors for y; andy, respectively.
By simple vector addition:
0Q' =yi +y2 = kyy; + Kyy,. (13-11)
It follows:
X3 = 0Q + Q'Q = kyy; + ksy, + ya. (13-12)
From Equation (13-12):
Y3 = X3 — kyy; — kg, (13-13)
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We want y; and y3 to be perpendicular to each other, or y, * y; = 0, or using Equa-

tion (13-13):

or

or

Y2 ' ¥3 = ¥y (%3 — kyy; — Kjy,)

=Y, X3 Ky, "y, —ksy, -y, =0 (13-14)

Since we have shown previously that y, - y; = 0, it follows from Equation (13-14):

K3y, * ¥y = ¥yt X3 (13-15)
Yo X3
ky = Y, Y, (13-16)

Finally, we want y; - y; = 0.
Using Equation (13-13) for ys:
Y1 Y3 =¥ (%5 — Kyp — kyyo) (13-17)
=¥ X Ky oY1 Ky ¥

—0 (13-18)

Again, since we shown previously that y, * y, = 0, we get from Equation (13-18):

Y X3 — Ky y; =0 (13-19)
MRS
k, = ¥y, (13-20)

13-4
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As a check to see if y, is perpendicular to y;, using Equation (13-13) for y; and Equa-
tion (13-20) for kj:

Y1 Y3 =Y X3 — Ky — kiyp)

=y X3—ky, -y —Kk3y; 'y,
=¥ X~ Kky; 'y,

Y1 X5
TN T oy ey

=y Xy =y X =0 (13-21)

as expected because y; -y, = 0.

To see if y3 is perpendicular to y, using Equation (13-13) for y3 and Equation (13-16) for kj:

Y2 ' ¥3 = ¥p - (X3 — Koy — k3y,)

=Yy X3~ Ky, ¥ — Ky, ¥,
=Yy X3~ K3y, ¥,

Yo X3
=Y X3~ Ys ' Yo Y2° Y2

=¥, X3 =¥, X5 =0 (13-22)

as expected because y, * y; = y; 'y, = 0.

In summary, given a set of non—orthogonal vectors xj, X X3, we can find the corresponding
orthogonal set yj, y2, y3. First, we let y; =xj. Then

Y2

Y3

¥3

X, — kiyg
Y1 X
L7\ M

X3 — Ky¥; — K3y,

_ Y1 X5\ (Y2 X3
=X TN Y2 Y2 |32

13-5
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13.2 ORTHOGONALIZATION OF ROTATION MATRICES

Referring to Section 11, consider matrix C:

Cll C12 c13
C=|Cu Cn Cul=(cC,G) (13-23)
Cy G Gy

where

column 1: C

column 2: C,

column3: C; = |Cas
33 _ (13-24)

It follows:

Cl = (C1CaiCay)s CF =(CpCpCy); €3 =(C13Ci3Cs3)  (13.25)

The orthogonality condition states:
cTc=1 (13-26)
or
Cn Cy Cy1) [Cpy Cra Cis 1
Cio Cpn  Cuf|Cy Cp Cup =0 1 0f @327
Cizs  Cxu Gy |Gy Gy Cy 0
Using Equation (13-24) and Equation (13-25) in Equation (13-27):

Cl

cTc = |C7|(c,C,Cy) (13-28)
CT
3

13-6
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From Equation (13-28):

CI ¢y ClC CTC:% 100
clc, cic, clcy=]010 (13-29)
clc, cjc, clc, 001

The matrix C is called normal when CTC produces unity along principal diagonal and
orthogonal when the off-diagonal elements are 0. When both conditions occur, the matrix is called
ortho-normal.

Equating the diagonal elements:
" Clc,=1; Clc,=1; Clcy=1 (13-30)
Using Equation (13-24) and Equation (13-25):
Ci

CIC, = (Cyy Cy Cyy)|Cn
Cy

=CH +Cy+C% =1 (13-31)
Ciz
C3C, = (CIZ Ca Csz) = |Cp
Cs,
=CL, +CL+C%L =1 (13-32)
Cis
CiCs = (Cy3 Cy3 C33) |Cos
Css

=ChL +C,+C% =1 o (13-33)

13-7
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As aresult of round—off errors in computations, the C matrix becomes increasingly non—ortho-
gonal. If we assume that these vectors are normalized by the method described previously in
Section 12, we have:

ICil = IG5l = |Gy = 1 (13-34)
where referring to (13-34), we constructed a set of new vectors, C;, C,, and Cj; such that

C, =iC; +jCy + kKCy

C, =iCy, + jCy, + kCy,

C; =1iCy3 + jCy3 + kCyy

and where, based on the above equations:

ICy| = \/C%l + C%l + C%l

Gyl = \/sz +C3, + C,

Gyl = \/C%a +C3; + C3

As shown in Figure 13-3, C, and C, are not perpendicular to each other, at angle 6. If we
want to make C; and C, to be perpendicular to each other, we will need to orthogonalize
C, and C,.

S Q

O P C,

Figure 13-3. Non-Orthogonal Set of Column Vectors

13-8
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Draw a perpendicular line from Q (the tip of C2) to C,, and call the intersection P.

By definition of the dot product:

CJC, =C, - C, =|C)|C, cos® | (13-35)

The vector OP is the component of C, along the direction of C;. Denoting the unit vector

C
along C, by — c,’ , we have:

C,
C,| cosb —
I ZI [C 1‘

1 ICII

= |C,| cosB
Cal cosb & 11E)

C,;
C,||C,| cos® ——
= 1C31C cos6 et

= CT C, — < (13-36)
c,f

-

using (13-35).
Denote the vector PQ by Cs.

Then, from Figure 13-3, by a vector addition,

C,=0P +C, ' (13-37)
or
C,=C, - OP
=C, Tc
Y |c T
by using Equation (13-36). (13-38)

Therefore, C; computed by Equation (13-38) using the known values of C, and C, is perpendic-
ular to C,.

13-9
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We started with C,, C,, and C;, and made C; perpendicular to C;. The next step is to find
C; (replacing C5), and make C; perpendicular to both C, and C,.

Define C; by C; 2 aC; noting that Ciis parallel to C;, and likewise define C, by

C, 2bvC, noting that C, is parallel to C,, where a and b are scalar constants.

Referring to Figure 13-4, and based on geometry:

OP =C; +C,

Also referring to Figure 13-4:
C, = OP + PQ

= (C'l' + Cij) +PQ

=aC; + bCy + C;

(13-39)

(13-40)

(13-41)

Cs
C; Q
C;
o) : »C,
. )
Cy
P

Figure 13-4. Defining Orthogonal Column Vectors

13-10
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It follows from Equation (13-41):

Now Cj is perpendicular to Cs.
That is,
’ ! ’ T 1
C2'C3=0 or (Cz) C3=0.
Using Equation (13-42) in Equation (13-43):

(3) 5 = (€3)'(C; - aC; - bC))

’ T ’
since (Cz) C; = O because we previously made C; perpendicular to C;, so that
. AT
C-C,=(C) ¢ =0
It follows from Equation (13-44):

b(Cs) €3 = (Ca) €,

(13-42)

(13-43)

(13-44)

(13-45)

(13-46)

Now, we want to make C perpendicular to C, (as well as perpendicular to C,) or we require:

C,'C3=0 and CTC3=0

13-11
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Using Equation (13-42):
CT €3 = CT(C; - aC; - bCy)

= C] C; — aCT C, - bCT C,

=0 (13-48)
Since C, is perpendicular to C,, ClT C, = 0, we have from Equation (13-48):
aC]C, = CT ¢, (13-49)
or
€ G 13-50
“TCrc, (15-30)
Substituting Equation (13-46) and Equation (13-50) into Equation (13-42):
CIG . (&) e .,

1 ¢, - C, (13-51)

= C. -
e (o) c

Equation (13-51) may be evaluated in terms of known values of C;, C3, and C given by Equa-
tion (13-38).

Next we show that C3 L C, using Equation (13-51) for Cs:

T CTC c)c, .
L2 ) 3 ¢, (13-52)

AT '
el

2

13-12
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It follows:

CT C, (C'Z)TCI (G

(CIZ)T Cs = (CIZ)T C; - CT C T
! (C) C;

= (c’z)T C, - (c’z)T C,
—0 (13-53)

' ’ T
because C; L Cy, and therefore (Cz) C, =0.

Equation (13-53) shows that C5 is perpendicular to Cs.

It follows that C,, C,, and C3 (computed from given C;, C,, andC,)are mutually orthogonal.

The new orthogonal set Cy;, Cp, andCs (denoting C; by C;), would be slightly off-normal
because of the way it was derived. Thus we may have to re-normalize, which makes it slightly non—
orthogonal. So, the process may have to be repeated until both normality and orthogonality criteria
are met within error tolerance requirements. Usually only a few cycles will be sufficient.

13-13/(13-14 blank)
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SECTION 14

THEOREM OF CORIOLIS

Consider two frames, Frames A and B, with acommon origin at 0. Frame B rotates with respect
to Frame A with angular velocity wap. A vector Rop = R may be expressed in Frame A by

RA =IX + JY + KZ (14-1)
and in Frame B by
RE = ix + jy + kz. (14-2)

In the following equation, we use a shorthand notation P() for -(%( ), and Py for ac_lf( ) with the

differential increment observed in Frame A, and Py for %() with the differential increment

observed in Frame B, and so on.

Now, taking g—RA relative to Frame A, and denoting it by PARA:

A dX dY dZ , «dl , 4] | ,dK
PoRA = IS + J50 + KEE+ xS+ YS + 292

dX dY dZ
+J9 k&
dt dt (14-3)

since unit vectors I, J, and K are fixed in Frame A and do not vary with time in Frame A. Using
Equation (14-2),

B_gdx 4y ,dz_ di_ di_ dk
PARE =i tigtkgt*a Vet 2o (14-4)

In this case, the unit vectors i, j, and k, which are fixed in Frame B, rotate relative to Frame A,
and therefore are time—varying if viewed from Frame A.

Now, consider % in Equation (14-4).
t

Referring to Figure 14-1, since vector i is a unit vector, it cannot change its magnitude.
However, it can change its direction relative to Frame A because i is fixed in Frame B, which rotates
relative to Frame A. For an infinitesimal angular displacement, the tip of the i vector moves on the

14-1
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plane parallel to the j — k plane. We can see this in the following way. If the frame is rotated
infinitesimally about the i-axis, the direction of the i—vector is not changed.

If the frame is rotated infinitesimally about the z—axis, the tip of the i-vector moves (to the left)
to the direction parallel to the j—axis. If the frame is rotated infinitesimally about the j—axis, the tip
of the i—vector moves (downward) to the direction anti—parallel to the k—direction. Therefore, we
may decompose Ai caused by the angular displacement of i of Frame B relative to Frame A in terms
of its displacements in the j and k directions.

Referring to Figure 14-1, Frame A (with unit vectors I, J, K) coincides initially with Frame B

) . . . i do )
(with unit vectors 1, j, k). We see that the angular velocity w, = d_tz about the Z—axis causes

de
£ At = jw,At during at, and the angular velocity Wy = Tty in Y-axis

A
Ai = jag, = §j 2

At
causes Ai = — k6, = —k —AeTy At = — k wy At during at. Summing the two components,
we have:
Ai = jw, At — kwy At (14-5)

Dividing by At and taking the limits, we have

di _ .
Fria Jwz—kwy (14-6)

14-2
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jwz At

— kwy At

Figure 14-1. Incremental Rotation of Frame

The right side of Equation (14-6) is also equal to wB x i as shown below, where the
superscript B in wB indicates that the components of w are expressed in Frame B. Since

wB = (wy, wy, w,JT andi= (1,0, 007,

we have

i J Kk
B = lw, wo wol| =;
wt Xi= 1x Oy OZ = jw,—kwy 14-7

using the definition of the vector cross—product.

It follows that:

di _ s .
i wB X i=jw, - kwy (14-8)
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Similarly, we can show that:

dj

— B i -
Erini X j (14-9)
dk _ B

i X k (14-10)

Now, referring to the last three terms of the right side of Equation (14-4), and using
Equations (14-8), (14-9), and (14-10):

Ky 2% = B ) + y(w® )+ 2fw? x K

Bxix + wB X jy + wB x kz (since x, y, z are

=w
scalars)
= wl X (ix + jy + kz)
= wB x RB (14-11)

Note wB is the angular velocity of Frame B relative to Frame A with components expressed
in Frame B).

Now,
PgRE = Py(ix + jy + k2)
Y- G Y (14-12)
Vi dt dt
because , j, k are fixed in Frame B, and therefore = 0,— dj = 0 and = dk _ 0. Note that the right

dt dt dt
side of Equation (14-12) is equal to the first three terms of the right side of Equation (14-4).

So, substituting Equation (14-12) and Equation (14-11) into Equation (14-4):
P,R® = PR® + wh, x RB (14-13)
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In Equation (14-13), the vector RB may be expressed, after appropriate transformations, in ei-
ther Frame A or Frame B, (see Section 15). So, dropping the superscript B in Equation (14-13),

P,R = PgR + w,z X R (14-14)

which is called the Equation of Coriolis or the Theorem of Coriolis.

What the Equation of Coriolis implies is that the differentiation (with respect to time) of a vec-
tor in one frame is not equal to the differentiation of the same vector in another frame that is rotating
with respect to the first frame. And to obtain the value of PAR in terms of PgR, we must add a correc-
tion term W,p X R (which incorporates the effect of rotation of Frame B relative to Frame A) to
PR as shown in Equation (14-14).

Readers who are interested in the geometrical approach in the derivation of Equation (14-14)
may find it in other text books such as “Mechanics” by Keith R. Symon (published by Addison
Wesley). Some may find the geometrical approach difficult to follow, while others may not. For
this reason, an analytical approach is presented here to assist the comprehension in view of the im-
portance of the theorem. :

14-5/(14-6 blank)
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SECTION 15

MATRIX FORM OF THE THEOREM OF CORIOLIS

The Theorem of Coriolis in vector form (which we derived previously in Section 14) in which
Frame B in rotating relative to Frame A with the angular velocity way is given by:

P,R =PgR + wug X R. (15-1)
where PAR means -ccllR observed in Frame A,
t

<}
and PgR means dt R observed in Frame B.

Expressing components of Equation (15-1) in Frame B:
R]” = [PgR]" + wB, x RE
[PAR]" = [PgR]" + Wiy x R®. (152)

Now, referring to the left side of Equation (15-2) (using the notations previously explained in
Section 5),

[PAR]” = B [p,R]"

= CB [PRA|

P [C‘Q‘RB]] since R* = C§RP

=B :[p C3|R® + cf [PRB]] (15-3)

remembering that P( ) is the dperator for -C%:-( ), and recalling from calculus that the chain rule given

below as:
4 = |4 dy
a1 = [dtx]y T X

which is valid in the operation of Equation (15-3) as well.
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It follows from Equation (15-3):

[P,R]” = CB [PCA| R® + CB CA PRE

- (B AlnpB B
= CB[PC4|R® + PR (15.4)

since C3C8 =CB =1

Returning to Equation (15-2) and recalling that the vector WRB XR may be expressed in
matrix form (as explained in Section 1) by:

why X RE < [wEK|RB (15-5)
where why = (w,(wywy)T and
0 Wz Wy
wBE = _\:/Nzy V\(’)x —‘(;/x

Substituting Equation (15-4) and Equation (15-5) into Equation (15-2),

CE [PCA| R® + PR® = PR® + [wBK]RP (15-6)

noting that (PgR)® = (PRE)B = PRE,
It follows that:
C% [PCh| Ry = [wEK]RE. (15-7)
Since Equation (15-7) has to be valid for all RB, we conclude:
CE p[ch] = wBK (15-8)
Now, pre-multiplying (from the left) both sides of Equation (15-8) by (CB)™! = (CB)T = C4

[because CE is a Coordinate Transformation Matrix (between two orthogonal frames), and thus is
an Orthogonal Matrix], we have:

Cch CB p[ch] =cp wik (15-9)
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Since C§ C® = C4 = I, from Equation (15-9):
’ PCh = Cj wBX

)

d

5 C8 = C8 Wig (15-10)

Equation (15-10) is the matrix form of the Equation of Coriolis.

Since

A — CA
pch = & ca = CA(m+1) - CA@m

dt At (15-11)

where C% (n) denotes the value of C4 atn At, where At is the computation interval, we have from
Equations (15-10) and (15-11):

C4 [n + 1] = Cin] + C3[n] whK[n] At (15-12)

Equation (15-12) suggests that we can update the orientation of the Eye frame (e.g., Frame B)
relative to Head frame (e.g., Frame A) if we know the angular velocity w,g which drives the eye
ball.

wo AB gives the angular velocity of Frame B (e.g., Eye frame) relative to Frame A (e.g., Head

frame) with the components expressed in Frame B in a skew-symmetric form of the 3 x 3 matrix
given in Equation (15-5) and repeated below:

BK _ | w, 0 —Wx (15-13)

The vector equivalent of Equation (15-13) is

wx
whe = [wy (15-14)
Wz
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The angular velocity of B relative to A with components expressed in A—frame, WQB , may
be obtained by a simple transformation:

A _ _ ~A B
Wap = |VY| = Cg Wup

= C§ | Wy (15-15)
Wz

Then, the Skew Symmetric Matrix wAk may be constructed from w4y obtained by Equa-

tion (15-15) using Equation (15-13).

Next, we want to derive the transformation equation to find w§§ (with components resolved

in Frame B) from wgﬁ (with the components resolved in Frame A), and conversely to find wﬁg
from WRE.

From Equation (15-10)

Scp=cp=chwik (15-16)
Since A and B are entirely arbitrary, exchange A and B in Equation (15-16):

c} = 3 wik (1517)
Taking the transpose of both sides of Equation (15-17):

. 1T T
2] = [z wa

T
[W ] CB (see Appendix A) (15-18)
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Now, using Equation (15-13):

- -T
T o Wz Wy
[WIBU‘AS] =] Wz 0 ~Wx
Wy WX 0
0 Wz —WY
= —WZ 0 Wy
Wy —WX 0
0 Wz Wy
= - WZ 0 _WX

Also, we know:
[ca) = c8

Using Equation (15-19) and Equation (15-20) in Equation (15-18):
cj = - [vif]ch

Now for the vector angular velocity:

WaB = — Wpa

It follows that:
AK _ _ . AK
WA = ~ Wpa

Substituting Equation (15-23) into Equation (15-21):
c = i o3
Since A and B are entirely arbitrary, exchanging A and B in Equation (15-24):

B _ ,BK B
Ca = Wga Ca

15-5

(15-19)

(15-20)

(15-21)

(15-22)

(15-23)

(15-24)

(15-25)



NSWCDD/MP-99/17

Now,

cBcg =1

Since ad—t—l = 0, differentiating Equation (15-26) using the chain rule:

| . .
[chcp]=chch+chch

dt
=0
Substituting Equation (15-25) and Equation (15-24) into Equation (15-27):
whsk CB cg+CcE wak i =0
Using Equation (15-26) in Equation (15-28):
wB = -} wi of

cg[- wis] o

Using Equation (15-23) in Equation (15-29):
BK — B ,AK ~A
wpa = Ca Wiy Cp

= AK BK
which transforms w BA O Wpy.

Since A and B are entirely arbitrary, exchange A and B in Equation (15-30)

AK _ ~A o BK (B
wip = Cg Wap Cu

. BK AK
which transforms w AB [0 Wip -

15-6
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SECTION 16
QUATERNIONS

Quaternion has been an unmixed evil to those who
have touched them in any way.

Lord Kelvin (1892)

Lord Kelvin’s remark notwithstanding, quaternions, as far as their applications to eye move-
ments are concerned, are useful.

The use of quaternions greatly facilitates the derivation of equations for the rotation angle and
rotation vector in the Euler’s Theorem of total equivalent rotation and the derivations of Rodrigues
equation as indicated in the latter half of this report. Otherwise, the derivations of these equations
seem to be almost too complicated to be tractable if we use conventional, non—quaternion algebra.

Historically, the quaternion is the result of the search for a “Three-Dimensional Complex
Number.” A complex number z=x +iy canrepresent a vector r in the plane. The complex numbers
furnished the algebra for vectors.

But complex numbers are applicable only when all vectors lie on the same plane. To treat vec-
tors in three—dimensional space, an analogue of complex numbers in three—dimensional space be-
came necessary. The mathematicians in the first half of the nineteenth century searched for the
three—dimensional complex numbers and associated algebra. This search led to the invention of
quaternions by William Rowan Hamilton in 1843, which inspired the emergence of vector algebra
in the latter part of the nineteenth century. It should be noted that, historically, quaternion algebra
preceded vector algebra, not the other way around.

16.1 QUATERNION ALGEBRA

A quaternion q is 2 number of the form of

q = qo + iq) + jq2 +kq3 (16-1)
For example,
q=2+3i+5j+ 6k (16-2)

in which i, j, k play roles somewhat similar to i in the complex the number z=a+ib. The real part
qo of the quaternion, q, is called scalar part s(q), and (iq; + jg + kqs) is called vector part v(q).
Thus Equation (16-1) is sometimes written as g=s(q) + v(q).
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The conjugate of q denoted by q" is obtained by making the vector part of q negative. That
is,

Q" = qo - (iq; + jq + Kkqs)
= qo — i1 — jg2 kg3 (16-3)

The three coefficients of the vector part are rectangular Cartesian coordinates of a point, while
i, j, k are unit vectors along the three orthogonal axes.

The unit vectors i, j, k obey Hamilton’s rules which are as follows :

ii=i2=jj=j =kk =k?=-1 (16-4)

(Note the similarity of the preceding rule to that of the conventional complex number, where
i =/— 1 hastheresult i2=-1.)

ij=k ji = k
jk =i kj = i
Ki=j ik = —j (16-5)

Note that the sign convention for Equation (16-5) is somewhat similar to that of vector cross—
products, where, for example, i x j=k and j x i = -k, etc.

Two quaternions p and q may be added or subtracted in a way similar to that of complex num-
bers. For:

P = po + ip1 + jp2 + Kp3
q = qo + iq; + jq2 + kq3
We can find p+q and p—q simply:
P+q=(po+qo)+i(p1 + q1) +j(p2 + q2) + kip3 + q3)
P—-q=(po-qo + i1 -q)+Jjp2 - q) + k(p3z - q3) - (166)

Next, we want to find out if pq is equal to gp, that is, if the commutative law of multiplication
holds. Now:

pq = (po + ip1 + jp2 + kp3) (qo + iq1 + jqz + Kq3) (16-7)
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If we carry out the operations of Equation (16-7) using the rules of Equation (16-4) and Equa-
tion (16-5), we get:

Pq = (podo — P191 — P292 - P3q3)
+ i(pod1 + P19o + P293 - P3q2)
+ j(Pog2 — P193 + P2q0 + P3q1)
+ K(poq3 + p1g2 - p2q1 + p3qo) (16-8)
while
qp = (qo + iq1 + jq2 + Kkq3) (po + ip1 + jp2 + kq3)
= (qoPo — 41P1 — 92P2 — q3p3)
+ i(qop1 + qipo + 92p3 — q3p2)
+ j(qoP2 - 91p3 + q2po + q3p1)
+ k(qops + qip2 — q2p1 + q3po) (16-9)

Compare Equation (16-8) and Equation (16-9). Although real (scalar) parts are equal, not all
the components of vector parts (i, j, k parts) have the same signs. We see that:

paF#qp | (16-10)

That is, the commutative law of multiplication does not hold for the quaternion multiplications, un-
like the complex number multiplications.

16.2 QUATERNION OPERATION ON VECTORS

Quaternions may be used to rotate a vector as well as to change the length of a vector. Consider
a vector r=ix +jy + kz . Now assume r is operated on by a quaternion q=qq + iq; + jqz + kqs
from the right to become r'=ix’ +jy’ + hz’. That is, ‘

qr=r’ (16-11)

or

(qo + iqy + jgz + kq3) (ix + jy + kz) = ix" + jy + kz’ (16-12)
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After carrying out the operation of Equation (16-12), using Hamilton’s Rule, we get
—(xq1 -yq3 - zq3) + i(xqo + zq2 - ¥q3)
+ j(yqo — 2q1 + Xq3)
+ k(zqo + yq1 - xq2)

=0+ ix +jy + kz (16-13)

Equating the coefficients of Equation (16-13) for real parts and i, j and k parts, we get:

Xq; — ¥q2 - 2q3 = 0 (16-14)
Xqo + 2zq2 — yq3 = X (16-15)
Ydo ~zq1 + Xq3 = Y’ (16-16)
zqo — yq1 - Xq2 = 7' ' (16-17)

We now have four equations for four unknowns qg, qi, g2, and q3, These are the known values
of the initial coordinates X, y, z of r, and the final coordinates x’, y’, z’ of r’, which is sufficient to
solve for qg, q1, q2 and q3.

Thus if we want to rotate and elongate a given vector r (x, ¥, z) into a new vector r'(x’,y’, z'),
we can do so mathematically, by the operation qr=r’ given by Equation (16-12) after first solving
for q, q1, q2, q3 using Equation (16-14).

16.3 LISTING’S LAW IN TERMS OF QUATERNION

The use of quaternion leads to a very simple formulation of Listing’s Law (see Section 3).
A quaternion q may be written as:
q = qo + iq; + jqz + kqs. (16-18)

The vector part (iq; +jqz +Kkqs3) of q points in the direction of the axis of eye rotation. Listing’s
Law says that the axis must lie in the j-k plane (called equatorial plane). This simply means that
the coordinate q; in i~direction is zero.

Thus, we can now state the effect of Listing’s Law very simply: The torsion of the eye in any
position is determined by a quaternion whose first vector component q; is zero, or by

q=4qo + jg + kqs (16-19)
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16.4 EXAMPLE OF QUATERNION ALGEBRA USING HAMILTON’S RULES
For two quaternions, v and q, denoted by
v =0+ ix + jy + kz (with the scalar part equal to 0) (16-20)
q =dqo +iqr + jg + kg3,

(ix + jy + kz) (qo + iq; + jgo + Kkq3)

vq
= ixqp + i%xq; + ijxqy + ikxqs
+ jyqo + jiyq: + j2yq2 + jkyqs

+ kzqo + kizq; + kjzqo + kZzqs

ixgo — Xq1 + kxqz — jxgs3
+ jygo — kyq - yq2 + iyqs
+ kzqo + jzq; - izqp - zq3 (16-21)

It follows:

vq = - (xq1 + yq2 + 2q3)
+ i(xqo + yq3 - 2zq2)
- J(xq3 - yqo — zq1)
+ k(xq2 - yq1 + zqp) (16-22)

Thus, vq generates a new quaternion denoted by p = pg + ip; + jp2 + kp3

where

po = - (Xq1 + yq2 + zq3)

p1 = (Xqo + yq3 — zqp)
p2 = - (Xq3 — yqo — zq1)

p3 = (Xq2 — yq1 + zqp) (16-23)

16-5/(16-6 blank)
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SECTION 17

EULER’S ROTATION VECTOR AND RELATIONSHIP BETWEEN QUATERNIONS
AND ROTATION MATRICES

As we have shown in Section 16, a vector r operated on by q from the left resulting in qr
which in turn generates another vector r' sothat qr=r'.

Similarly, a vector v=ix + jy + kz pre-multiplied by q~! and post-multiplied by q generates
an new vector, v’ =ix’ + iy’ + kz'.

That is,
v = qlvg 17-1)
It follows:
(ix" + jy' + kz')
= (g0 — iq; — Ja, — ka,)(ix + jy + kz)(qq + iq; + jg, + kas) (17-2)
In the rotation matrix notations:
v. = Cv (17-3)
or
x’ Ci Cpp Cysfx
Y[ = |Ca1 Cxun Cyfly (17-4)
z' Cyi Cip GCsslz)
where the matrix C here is used in the sense of Section 8, .rather than Section 5.
| The above equation is equivalent to:
ix' = i(Cyx+Cpy+Cp)
iy’ = j(Cyx+Cpuy+ Cy3)
kz' = K(C3x+Cspy+ Cy) (17-5)
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If we carry out the algebra of Equation (17-2) by using Hamilton’s Rule (discussed in
Section 16.1) we get using shorthand notations Qj;:

v = ix'"+jy +kz
= i(Qux+Qpy+Q;z
+J(Qux+ Qpuy+Qxuz
+ Kk (Qa X + Q3 ¥ + Q3 2) (17-6)
in which:
Q = qg+qi—g5—af=Cy
Qu = 2(q093 +9;9) = Cpy
Qi = 2(9193 - 2%) = Cis
Qy = 2 (Ch d2 — 9o Q3) =Cy
Qp = §¢-a1+93-93=Cyp,
Qyp = 2(q0q1 +Q2Q3) =Cy
Q3 = 2 (qO q, + q Q3) = Cy
Qi = 2(9295~ 9 %1) = Cx
Qs = Q(z) - q% - Q§ + Q§ = Cy (7-7)

Note that Equation (17-6) may also be written as:

x' Qy Qi Qulfx
Y| = [Qu Qxn Qul|y (17-8)
z Qs Q3 Qssf|z
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Comparing Equation (17-8) with Equation (17-4): |

Cii Ciz Ci31 [Qu Qu Qs
Cui Cp Cyf = [Qa Qpn Qp (17-9)
Cy; Gy Gy Q31 Qi Qs

where Qj; is given in Equation (17-7) in terms of the elements qo, q1, g2, and g3 of a quaternion q.
From Equation (17-7) and Equation (17-9):
Ciy = Qu = +q;-a;—aq;
Cpn = Qp = gy~ qi+q—dj

@-qi- 9+ (17-10)

Cys = Qs
It follows from Equation (17-10):
CitCptCy = 3‘1%" qf — a3 — a3
= 3q5+q5— (g +a}+ a5+ a3
= 4g2-1 (17-11)

because q3 + q3 + q3 + q5 = 1, (asderivedin Equation (19-10)). It immediately follows from
Equation (17-11):

[N B

(L +Cyy +Cpp + Cy) (17-12)

N =

Qo ~
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Also, from Equation (17-7) and Equation (17-9):

Cis—Cy = Q33— Q3 = 4q;q (17-13)
_ Cn—-Cy

q = 4—% (17-14)

Cyi—Ci3 = Q31 —-Qi3 = 44q;q (17-15)
Cy1 — Cps

q; = ——4—%‘— (17-16)

Ciu—=Cy = Qi —Qy =4q40; (17-17)
- Cun=Cy

9; = W (17-18)

Thus, we now have expressions for qo, q1, g2, and g3 in terms of the elements C;; of the rotation
matrix with Equation (17-12) in which qg is given in terms of Cyj, Cyy and Cas.

Conversely, if want to express Cj in terms of qo, qi, q2, and g3, they are given in
Equation (17-7).

Using Equation (17-12) through Equation (17-18), the vector part v(q) of the quaternion q may
be expressed in terms of the elements C;; of the rotation matrix as follows:
C,, —C C,y—C C,—-C
v = i 23 32+j 31 13, g Z12 21

17-19
4 qg 44 4 q, ( )

where qq is given by Equation (17-12):

o=

g4 = 5 (1+Cy +Cypy+Cy)

N —
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Now, we want to express the rotation vector along the Euler axis in terms of the unit vector u
and its components uy, uy, andu, along X, Y, and Z axes. From Section 19, on “The Angle of Quater-
nion,” we have: ‘

_ _ 4
U, = ux = _H;
sm—2—
_ 9
U = Uy = —5%
Sll‘l-z-

0 o= = (17-20)
sin>

Using Equation (17-14), Equation (17-16), and Equation (17-18) in Equation (17-20):

_ 1 Cy — Cy,
Ux = 7% 1
siny 2(1 +Cyy + Cypy + Cyyf
— 1 Cs; — Cys
by = —% 1
SINZ 2(1 + Cyq + Cyy + Cy3)
C,, — C
u, = -1 12~ -2l : (17-21)

¢ 1
Sln’z—, 2(1 + Cll + C22 + C33)2

where % is the one half of the rotation angle ¢ about the Euler axis.

¢

Now, we want to express Equation (17-21) in terms of ¢, not > utilizing the identity shown
below:

1

sin % (1+Cyy+Cp+Cy) = sing (17-22)

which will be derived at the end of this section, and given in Equation (17-34).
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Using Equation (17-22) in Equation (17-21):

u Cy —Cap
X 2 sin¢
u Cs1 — Cp3
y 2 sing
u Cp — Cy
z 2 sin

(17-23)

Equation (17-23) shows the components of the unit vector u = iuy + juy + ku, along the Euler
axis in terms of C;; of the rotation matrix and Euler’s principal angle ¢. Although it is relatively

easy to derive here by means of quaternion algebra, it would have been extremely complicated, had
we not used quaternions.

Next, we derive Equation (17-22).

From a standard mathematical table:

cos2a = 2cos’a — 1 (17-24)
sin2a = 2 sin o cos o (17-25)
From Equation (17-11):
Ciy+Cp+Cy+1 = 4q3 (17-26)
Since qq = cos% by definition (see Section 19), from Equation (17-26):
C;y+Cyp+Cyy+1 = 4cos? %’1 (17-27)
From Equation (17-24), replacing 20 by ¢ sothat a = %
cos¢p = 2 cos? % -
cosp+1 = 2 COSZ%
2(cosp + 1) = 4 cos? % (17-28)
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Using Equation (17-28) in Equation (17-27):

This gives an important equation:

which says that the trace (sum of the diagonal elements of the rotation matrix) is equal to twice the
cosine of the rotation angle about the the Euler axis plus 1.

Referring to the right side of Equation (17-29), and using the first equation of Equation (17-28)
for cos ¢ :

2+2 cos¢)% = [2 + 2 (2 cos? % - 1)]

1

2
= (2+4cos2£2E—2)

(4 cos? 522)5

= 2 cos%)- (17-31)

ignoring the negative root.

Using Equation (17-31) in Equation (17-29):

LS

(Ciy + Cpp + Cy3 + 1) = (2cos¢ + 2 = 2 cos%z (17-32)
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From Equation (17-25) replacing 2 o by ¢ sothat a = %
. _ ] ¢
sin = 2 sin 5 COS 7

(17-33)

Substituting Equation (17-32) into the left side of Equation (17-22), and using Equa-

tion (17-33) we have:

. ¢ : .
31n§—(1+C11+C22+C33) = |sin|2{cos 5

2

which is what we wanted to show.

17-8

) = sin¢  (17-34)
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SECTION 18

EULER’S ROTATION VECTOR RATE

As shown in Section 2, the Euler’s Rotation vector u (u for unit vector) has the same direction
cosines both in the Eye Frame and the Head Frame. That is,

uf = ull (18-1)

It is also true that

uE = CE uf (18-2)

It follows:

CE uH = (18-3)

Differentiating Equation (18-3) with respect to time:

dCE H H
—H H E du” _ du” _
T v T Cx ar i (18-4)
or
dCE H
H H _ (1_ cE) du? .
5 U (T-cg) G (18-5)
Referring to Section 15:
d
5 C8 = C8 Wip (18-6)

where we used * in place of k in superscript.

Identifying H with A and E with B,

éitcH = Cg WI]?I,;E (18-7)

Taking the transpose of Equation (18-7):
H T H T
[ Sc ] [cH wE]
= [WEI"‘E]T[CE]T (18-8)
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H|T E :
Now, [CE] = Cy for Orthogonal Matrix. Therefore,

T
d~H| - |4 ~E
[dt CE] [dt C ]
and, réfem'ng to Section 1 and other sections, we have

0 ~Wz Wy
wEL =Wz 0 —Wx

WHE T
Wy Wy 0

Therefore,

[

0 Wz Wy
~-Wz 0 Wx

Wy —Wx 0
0 —Wz Wy
“Wy Wy 0

= wE*
- WHE

A matrix A is called skew-symmetric if A = —AT such as Equation (18-11).

Substituting Equation (18-9) and Equation (18-11) into Equation (18-8):

E - E

Substituting Equation (18-12) into Equation (18-5):

wEr CEul = (1 - Cf) dgtH

Substituting Equation (18-3) into Equation (18-13):

duH

- WII?IE (I - CH) dt

18-2

(18-9)

(18-10)

(18-11)

(18-12)

(18-13)

(18-14)
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As an intermediate step to find (31—1: in terms of ¢ and u, we want to find a 3 x 3 matrix M in terms

of ¢ and u with the following characteristics:

D MM =1 (18-15)
2) M =1 ' (18-16)
3 Mu =u - (18-17)

=1+2cos ¢ (18-18)

Equation (18-15) requires that M be an Orthogonal Matrix. Equation (18-16) follows from
Equation (18-15). Equation (18-17) and Equation (18-18) complete the requirements for M to be
identical to the Rotation Matrix C.

~ The following Equation (18-19) meets the above requirements from Equation (18-15) through
Equation (18-18):

(See, for example, Space Craft Attitude Dynamics by Peter C. Hughes, John Wiley, 1986)

M A cosdpI+ (1 - cosd)uuT — sindpu * (18-19)
where
-ux
uuT = |Uy [uX Uy UZ]
uz

[uyuy UxUy UxUz |
= luyuy Uyly Uylg (18-20)
uyuy UzUy Uzlz

and u* is the skew—symmetric form of the vector u = [ux uy uz]T similar to Equation (18-10) for
W}EI*E in form, and given by:

0 "YUz Uy

u = | Uz 0 =ux (1 8-2 1)
Uy ux 0 '
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Similar to Equation (18-11), it is obvious that
W] = -
Expanding Equation (18-19):
My M Mg

M= M21 M22 M23 = COS¢
My Mj Mg

OO =
O = O
-0 O

uZ uxuy Uxlz

+ (1 —cos¢) |uyuy u%( Uy uz
2

uzuy uzuy Uz
0 —uz Uy
~—sin ¢ | Uz 0 —uy (18-22)

Uy Uy 0

Expanding the right-hand side of Equation (18-22), and equating the element by element:
M;; = (1 — cos¢) u% + cos¢
M,, = (1 — cos¢) u% + cos ¢
M;; = (1 — cos ) u% + cos
M, = (1 — cos¢) uju, + uysing
M,; = (1 — cos®) uyu; — ussing
M,; = (1 — cos®) u,u; + u;sing
M, = (I ~— cos®) uszu, — u;sing
M;; = (1 — cos¢) uzu; + u,sind

M13 = (1 - COSd)) u1u3 - U2 Sln(b (18'23)
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Before we prove that M given by Equation (18-19) satisfies the requirements given by Equa-
tion (18-15) to Equation (18-18), we need several mathematical relationships, which are given below:

ux
llTll = [uX uY uZ] uY
Uz
=u} +u}+ul=1 (18-24)
wuTuu? = u(uTu)uT = un’ (18-25)
0 Uz Uy ux
uvu=|uz 0 -ux| [uy
—Uy uX 0 uy
Uz Uy + Uy Uz 0
= Uz Uy — Ux Uz | = 0 (18-26)
—uY uX + uX uZ 0
0 —uz Uy
uTu® = [ux Uy uZ] uz 0 -uy

-Uy Uy 0

= [uY uZ - uZ uY '—UX uZ + uZ uX uX uY - uY uX]

=[0 0 0 (18-27)
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0 -uz uy 0 -uz Uy
vt = uz 0 —uy u; 0 —uy
Uy uy O ~Uy uy 0
w2 - v} uyuy  -uguy
=| ugyy —uZ-uj uzuy (18-28)
Ux Uz Uy Uz o} -k

Since for the Euler’s unit matrix, ui + u%, + u% = 1, we may express Identity Matrix I by

[1 0 0
I=10 1 0

o 0 1

[ 2 2 2 0 0

uy +uy +u

XY w2 40l 0 (18-29)

0 X Y z ) 5
0 0 uy +uy +uz

It follows from Equation (18-20), Equation (18-28), and Equation (18-29):
" = wu’ - I (18-30)

Now, from Equation (18-19):

MT = [cosq)l + (1 — cos¢p)uuT — sin ¢u*]T

cos ¢IT + (1 - cosq))[uuT]T — sin q)[u*]T

cosdI + (1 — cosd)uu’ + sindu” (18-31)

since I = IT, [uuT]T = [uT]TuT = uu’ and [u*]T = —u"
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Let us determine if Equation (18-15) is satisfied. Using Equations (18-31) and (18-19):
M™ = [cos ¢I + (1 = cosd)uuT + sin q)u*] [cos oI + (1 — cosd)uu’ — sin q)u*]
= cos® ¢l + cos (1 — cos p)uuT — cos ¢ sinPu”

+ (1 — cos¢)cospuu’ + (1 — cos q))zu(uTu)uT - (1 = cos cb)'u(uTu*)

+ sindpcosu” + sind(l — cos (j))(u*u)uT — sin? puu” (18-32)
After some algebra, Equation (18-32) reduces to:

M™ = cos? ¢I + sin® Pl
+ [terms which cancel each other]

+ [terms which equal to zero]

1 0 0
=1=[0 1 0 (18-33)
0 0 1

This proves Equation (18-15), establishing that M is an Orthogonal Matrix.

After Equation (18-15) is established, it is a simple matter to prove Equation (18-16). Taking
the determinant of Equation (18-15), and using Equation (18-33):

MT™] = M7 M|
=M M o= M
= =1 (18-34)
It follows from M|*> = 1,
M =11 (18-35)
Referring to Equation (18-19), M is a continuous function of ¢, and evaluating [M| at ¢ =0 :

M=[[+0-0= =1 (18-36)

18-7
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Therefore, we conclude

M = + 1 (18-37)

which proves Equation (18-16).

To prove Equation (18-17), we use direct multiplication of M given by Equation (18-19) by u
and using Equation (18-24) and Equation (18-26):

Mu = [cos¢I + (1 — cos¢) uuT — sin ¢u*] u
= [cos ¢u +u (uT u) — cos pu (uTu) — sin¢ (u*u)]
= cospu + u — cosdpu — 0
=u (18-38)

Finally, to prove Equation (18-18), we use the first three equations of Equation (18-23):

Trace M = My + My + M33
= (1 - cos®) uf + cosd + (1 — cos) u% + cos
= + (1 — cos}) u% + cos¢

=ul+ul+ul- coscb(u% +u? + u%) + 3cos

1 —cosd + 3cos¢

1+ 2cosd (18-39)

since u? + u3 + u? = 1 for unit vector.

In summary, we have confirmed that M is identical to the Rotation Matrix CE , or

CE =M = cos ¢ + (1 — cos¢p) uu’ — sin ¢u” (18-40)

18-8



NSWCDD/MP-99/17

Substjtuting Equation (18-40) into the right side of Equation (18-14) for Cﬁ :

_[WI}LE{*E] u = [I - [uuT - COS(])(I - llllT) —u* Slnq)]} ‘%ltl-

= [I —uu’ + cos¢I — cosd uuT + u*sin(b] (cil_ltl

_@_ Tgﬂ d_ll_ Td_u * . d_u )
=5 u(u dt)+cos¢)dt cosq)u(u dt)+u smq)dt (18-41)

Now, u is € unit vector. Therefore, it cannot change its magnitude, but it can change its direction

du

only. This means that the infinitesimal change represented by n

must be at the perpendicular direc-
tion (right angle) from the direction of u. That is,

Ldu

Tdu _ }
T 0 (18-42)

u at

since cos 90° = 0.

Using Equation (18-42) in Equation (18-41):

— [wE*] y = du _ du , *anpdu -
[WHE] It cosq)dt +u s1171cl)dt (18-43) A
= [0 = cos®)I + u”sin q)]%% (18-44)

Multiplying both sides of Equation (18-44) by the inverse of [(1 — cos®)I + u”sin ¢] from
the left:

&~ [a - cos)T +u” sinq)]_l [- wE u] (18-45)

Now, using Equations (18-10), (18-11), and (18-21), we can show that:

— witu = u'wi; (18-46)

18-9
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or
0 Wz —Wy Uy C 0 —-uz Uy Wy
- Wz 0 Wx Uy [ = uz 0 ~—Uux Wy
Wy —Wx 0 uz — Uy Uy 0 Wz
i Wz Uy — Wylz
= [~WzUx + Wxuz (18-47)
WY uX - WX UY

. This confirms, for two vectorsaand b, a X b = — b X a may be expressed a’b = — b'a
using a Skew—-symmetric Matrix.

Using Equation (18-46) in Equation (18-45):

du

W (1 - cos@)T + u*sing] u” whe (18-48)

Note that wﬁE is a3 x 1 column vector, while WII::'IE is a 3 x 3 mat rix equivalent of the vector

wﬁE , which is the angular velocity of the eye relative to head with components expressed in the Eye

frame.

The inverse indicated in Equation (18-48) may be expressed as

[(1 —cosdp) I + u* sinq)}_l

= T3 %:osq) [I - % sin pu” + % (1 + cos¢) (uuT - I)] (18-49)

The validity of the right side of Equation (18-49) may be checked by multiplying it from the left
by [(1 —cos®) I + u”sin q>] and confirming that the result reduces to the Identity Matrix

1 00
I=]0 1 0]f.
0 0 1
Substituting Equation (18-49) into Equation (18-48):
da _ _ 1 {u* R o'’ - % (1 + cos¢) u*} wEp (18-50)

dt ~ 1 - cos¢ 2

18-10
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where we used the relation

%(1+cos¢) (uuT—I) %(1+cos¢)[ (u u) u*]
= — %(1 + cos¢) u* (18-51)

since uTu” = [0 0 0] by Equation (18-27).

It follows from Equation (18-50):

(cii‘tl 1—:_105;(_5[1‘1 —%cosq)u*—%sincbu*u*]wfm
-1 10— cosd)u” =1 sin pu*u*|wE 18-52
=T cosd 5(1 = cos)u” — 5 sin puu” | wig (18-52)
From Equation (18-52):
CUR DU s 18-53)
dt ~ 2% T2 " [ VHE (18-

in which we used a trigonometry identity:

¢ sing. -
cot 5 =1 05 h (18-54)
Using Equation (18-30) for u*u®, Equation (18-53) may also be written as
du _ 11,16 ¢ (uuT - I) wE ' (18-55)
dat |2 2 2 HE

Equation (18-53) or Equation (18-55) is the time rate of the unit vector along the Euler’s single
© equivalent rotation.

d
The equation for %ltl- as well as d—(f for the rotation angular rate (scalar) about the Euler’s princi-

pal axis (see Section 22) is difficult to solve. One reason is that the vector u is defined only after a
rotation has taken place; consequently, there is some problem in setting an initial value for u.

18-11/(18-12 blank)




NSWCDD/MP-99/17

SECTION 19

THE ANGLE OF QUATERNION: THE ROTATION ANGLE OF EULER’S THEOREM

Consider a unit vector u along the axis of a single equivalent rotation in the context of the Euler’s
Theorem that makes angle o with both X and Xg axes, angle 8 with both Y4 and Yg axes and
angle y with both Z and Zp axes. Then, the components uj, uy and u3 of u along X, Y, and Z axes
of both Frames A and B are related to a, 3, and vy (see Section 2):

u; = cos o along X axis

up = cos B along Y axis

uz = cos y along Z axis.
The quaternion q may be expressed as:
q=qo+1iqr + jq2 + ka3 = qo + q (19-1)
in which
qo is called the scalar part of q denoted by s(q), and
(iq1 +°jq2 + Kqs3) is the vector part of q denoted by v(q).
So, we may write:

q = s(q) + v(@) (19-2)

Assume Frame B (e.g., moving Eye frame) is rotated by angle ¢ from Frame A (reference—pri-
mary frame) about the Euler axis.

Euler four-parameters qo, q1, q2 and q3 (which obey the quaternion algebra explained in
Section 16) are defined by:

1
Qo = cos5¢ (19-3)
- T 1
q = s1n§q) = cosO smE(j) (19-4)
= S 1
q, = u, s1n—2-cb = cosf sm-2-¢ (19-5)
gz; =u sinl¢ = cosy sinld) (19-6)
3 3 2 2

19-1
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Substituting Equation (19-3) through Equation (19-6) into Equation (19-1):
_ 1 . .1 . 1 1
q= cos-2—<1) + icos @ smch + jcos B sm§¢ + kcos ¥ sm2¢>
= cos%q) + (icosa + jcosP + kcosy) sin%Q) (19-7)
Since
icosa+jcos B+kcosy=iu+ju+ku=u (19-8)

we have from Equation (19-7):

q= cos£2E +u sin% (19-9)

in which ¢ (not %) is called the angle of the quaternion q and u its axis.
Using Equations (19-3), (19-4), (19-5), and (19-6):
G +ai + a3 +a
2 ¢

cosz-ciE + (cosza + cos?B + coszy) sin® =

2 ¢

0082 ¢ 2

+ sin?

=1 (19-10)
since cos?a + cos2P + cos?y = 1 based on Equation (19-8).
Adding the squares of Equation (19-4), (19-5), and (19-6):

2 ¢
2

q% + q% + q% (cosza + cos?P + coszy) sin

= sin22 | (19-11)

It follows:

/2
)1

sin%2 = (q% +qi +q3 (19-12)

19-2
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If the Eye frame (Frame B) is rotated from the reference—primary orientation by angle ¢ about
the Euler axis with unit vector u, then we represent the new orientation of the Eye frame by

q= cosﬂ)- + usin9 (19-13)

2 2
Inverse of q : q~1

Previously, we defined the conjugate of q* of a quaternion q, given by

qQ = qotiq; +jg, + kqs (19-14)
to be
q* = qo— (ig; +jg, + kgz) = qo —ig; — jg, — Ka; (19-15)
It follows:
qq* = (qo +1iq; + ja, + kas)(qo — iq; — jg, — Kas) (19-16)
a*q = (a0~ ia, ~ ja, = kas)(qo + iq; + Ja; + kgy) (19-17)

In both Equation (19-16) and Equation (19-17), if we carry out the algebra using the Hamilton’s
Rule explained in Section 16, we get the same result as follows:

ag* = g*q = G+l +qi+q3 = g+ (a?+q}+qj

= 02?4 2? - (1.
cos > + sin ) 1 (19-18)

using Equations (19-3) and (19-11).
By definition, the inverse denoted by q~! of q must satisfy:
@ = gqlqg = 1 (19-19)

From Equation (19-18) and Equation (19-19), we conclude that:

The inverse q~! of q is equal to the conjugate q* of q if we use the definition given in
Equations (19-3), (19-4), (19-5), and (19-6). That is,

q! = q" = go - (iq; + ja, + kas) (19-20)

19-3
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Now consider a quaternion operation on a vector v such that qvq! results in a new vector v'.
That s,

v = qvq’! (19-21)

Now, consider a Rotation Matrix C that performs a similar operation on vector v to yield v’ such
that

v =Cv (19-22)
or

Vi Cii Ci Ci)v,

val = |Ca C Co3||V2 (19-23)

V3 Cy; Cyp Cuf(2

It is shown in Equation (17-12) of Section 17,

1

Q=13 (1+Cyy +Cpy+ Cyf (19-24)

From Equation (19-3) and Equation (19-24):

1

cos 1 ¢ =2 (1+Cy+Cp+Cyyf (19-25)

Squaring Equation (19-25):

1 1
cos? 5 ¢ =7 (1 +Cyy + Cyy + Cyy) (19-26)

Using trigonometry, identify from a Math Table:

29 _1+coso }
cos® 5 = ———— (19-27)

and substituting Equation (19-27) into Equation (19-26):

1+cosdp g

—5 =3 (1+Cypy + Cyy + Cyy) (19-28)
It follows:

Cy + Cp+ Cyy=1+2cosd (19-29)

Thus, the sum of the diagonal elements, called “trace,” of the Rotation Matrix C is equal to
(1 + 2 cos ¢0). From Equation (19-29):

¢ = cos”! B (Cyp + Cpy + Cy3 — 1)] (19-30)

19-4



in which ¢ is the rotation angle about the single equivalent rotation axis, which moves Frame A (pri-
mary-reference frame) to Frame B (current Eye orientation).

|
|
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To confirm that ¢ given in Equation (19-29) is indeed the rotatiori angle about the Euler axis,
| consider a rotation by 8z about Z—-axis. Then, the Rotation Matrix from Frame A to Frame B is, as
‘ shown in Section 5 by:

5 gll gl2 513 Césgz sm%z (())
Ca =% %22 Lo3) = [-smn bz cosYy (19-31)
Ciy1 Gy Cy 0 0 1

Applying Equation (19-29):

Cip + Cyy + C33 =cosBz + cosby + 1
=1+ 2cosf, ' (19-32)
Comparing Equation (19-29) with Equation (19-32):
1+ 2cos¢p =1+ 2cosb, (19-33)
or
¢ =6 (19-34)
as expected.

Similarly, for the rotation about X-axis by 0x:

C c' C 1 0 0
11 12 13 )
Cyi Cp Cy3| = |0 cosBy sinby (19-35)
31 G Gy 0 -sinBy cosbx
Cll + C22 + C33 = 1+ COSGX + COSOX
=1+ 2cosOy (19-36)

Comparing Equation (19-29) with Equation (19-36):
1+2cosd=1+2cos 6 (19-37)

or

b = 0y (19-38)

as expected.
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SECTION 20

RODRIGUES VECTOR

According to Euler’s Theorem, any sequence of rotations of a rigid body (such as an eye-ball
or the eye—coil frame fixed on it), that has one point fixed at the origin of the coordinate frame can
be achieved by a single equivalent rotation through some angle ¢ (called Euler’s principal angle)
about some axis (called Euler’s axis) that passes through the same fixed point at the origin of the
coordinate frame.

Referring to Section 2, suppose the unit vector u along Euler’s axis makes an angle o with the
Xpg axis of Head frame and the Xg axis of Eye frame; an angle B with the Yy axis and Yg axis; and
an angle 'y with the Zy axis and Zg axis.

Then the components ux, uy and uz of the unit vector along the X-axis, Y—axis and Z-axis
of both frames are

Uy = cosd; Uy =cosP; uy = cosy (20-1)

and

u = juyx + juy + kugy (20-2)

In Section 19, we defined the parameters for the quaternion q by,

q=qo + iq; + jq2 + Kkq3 203
by

qo = cos%

q; = cosasin%)- = uxsin%

qQ = COSﬁsin% = uysin%

q; = cosy Sin% = u, sin% 0

where ¢ is Euler’s principal angle for the single equivalent rotation.
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Note that Equation (20-4) is defined in terms of %} not ¢.
Rewrite Equation (20-3) as
q = s(q) + v(q) (20-5)
where
s(q) = (scalor part of q) = q,
v(q) = (vector part of g) = iq; + jq, + Kqs
Using the definition of Equation (20-5), we express the vector part of q as:

v(q) = iq; + jg, + kq;

R . RN () . ¢

= juy sm-2— + juy smE + ku, smi

= (iux + j i 9

= (iux + juy + ku,)sin >

= u sin ) ' (20-6)

2

Equation (20-6) shows that the vector part (ig; + jq, + kq;)is equal to the unit vector u along

Euler’s axis scaled by sin % We modify v(q) by dividingitby cos % = qy and call it the

Rodrigues Vector p (or some call it Gibbs Vector). The Rodrigues Vector p is defined by:

)
u sin%
pA——Ft=u tan%l (20-7)
cos>
where 4 implies “is equal to” by definition.
From Equation (20-7) with Equation (20-2):
Y - SN . b
iuy sins + juysins + ku,sinz
p=—2 Jy¢2‘ 2SIy (20-8)
cosx

20-2



It follows using Equation (20-4):

_G, B
p”lq0+3q0+k

94

90

\
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| (20-9)

or

P q,
p = [8?] = g (20-10)

¢

Note, in Equation (20-7), p goes to infinity when the denominator cos7 = 0 or % = 90°

or ¢ = 180° This singularity at ¢ = 180°of p s a limitation in the use of the Rodrigues vector,
while referring to Equation (20-4), the magnitude of the quaternion parameters q, q; q, and qs

cannot exceed unity. An advantage of the Rodrigues parameters over the quaternion parameter is
that the former has three parameters while the latter has four parameters.

However, the singularity at ¢ = 180° poses no problem for eye movement analysis because

this situation equivalent to the rotation of the primary, reference eye position 180° to the back of
the head, is physiologically impossible movement.

In Section 17, we found that:

9o = % (1 +Cyy + Cyp + Cyp)'/? (20-11)
C — Gy

4 = - (20-12)
Gy — Cis

4 = - (20-13)

2 (1 +Cy+Cyy+Cyy)

C,-—-°C

a3 Bl (20-14)

T2 (L+Cyy +Cp + Cpy)lP2

Using the above equations, we can express the Rodrigues parameters in terms of Cj; of the
Rotation Matrix C.
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It follows from Equation (20-10), using Equation (20-11) to Equation (20-14):

9 _ Cys — Cyy — R3 — Rys
Px =g "T+C,;+Cp+C;; 1+R, + Ry + Ry (20-15)
_ % _ Cy1 = Cps _ Ri3 — Ry
Py =3, "T+C,,+Cp+Cy; 1+R; +Ry + Ry, (20-16)
Cyp—2C R,; — R
4 _ 12 21 _ 21 12 (20-17)

pZ='q_0_1+C11+C22+C33_1+R11+R22+R33

eliminating the square roots present in the denominators of Equation (20-11) to Equation (20-14).
For the meanings of Ry; vs Cj;, see Section 5.

In Section 17, we found the relationship between the elements Cij of the Rotation Matrix C and
the parameters qq, q;, q5, and g5 of quaternion q:

Cy Cp Cis) [B+ai-a3-a) 2@ +91%)  2(9195 = 9092)
821 gzz gza =|2(q192 = q0as) a9} —a}+4a%—-q% 2(q0q; +9293) |(20-18)
31732 ©33) [2(qpq, + 9193)  2(d,93 — 90qy) 95— 43 — a3 + 43

From Equation (20-10), we have
41 = P19 > 92 T P290 > 93 = P3do (20-19)
(P1 =Px> P2 =Py P3 = Pz)
Previously in Section 19, Equation (19-10), we found that
g +ai+a;+aqi=1 (20-20)
Substituting Equation (20-19) into Equation (20-20):
a3+ plag+ P P+ P af=ap L +pl+p3+p) =1 (20-21)

or

2 1
(20-22)
=T p? + p2 + p2
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Using Equation (20-19) and Equation (20-22) in several elements of Equation (20-18):
Cn =q(2,+q%—q%—q§
= qp + piaj — 345 — P34}

- 63 0+ 6} -0} - p) 023

= 1 2_ 2_ 2 ]
T Trmr g G TP TP TR (20-24)

Ciz = 2 (q¢93 + 9192
= 2 (qoP399 + P190P290)

=2 q% (P3 + P1P2)

Cp, = 2
21+ p2+p2+p

5 (P3 + P1P2) (20-25)
3

Similarly, the rest of Cj; may be found in terms of p; p, and p;. The results are:

rCll c12 C13 1

C21 C22 C23 = ) 3 3

C31 Cs Cy 1+p7+p;+P3

(1+p2-p,—p2 2(p3+P1P2) 2(p1pP3 — P2)

2(p; P2 — P3) 1-p2+p3-p3 2(p;+p2P3) (20-26)
2(02 + p1P3) 2(P2 P35~ P1) 1-p}-pj+p3

To determine Euler principal angle ¢ for single equivalent rotation, we use the previously
found relation: :

in which Cll, C,y, and C53 may be computed in terms of p; p, and p; from Equation (20-26).
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SECTION 21

RODRIGUES VECTOR DIFFERENTIAL EQUATION

In this section, we derive the differential equation for the Rodrigues Vector driven by the angu-
lar velocity of the Eye frame relative to the head acting as input.

Referring to Section 20, the Rodrigues Vector p is defined by:
¢

p=utany 21-1)

where u is the unit Euler’s Rotation vector and ¢ is the (single equivalent) rotation angle about Eul-
er’s Rotation axis. It follows:

3 (uund)

d dt 2
_ .. Pdu d, ¢
= tan >dt -i-uatan2
o Pdu , u_ 2¢do
B I R W (21-2)
using the identity - 2798 Ghere A 1
g the identity dttanA sec” A T ere A is an angle.
In Sections 18 and 22, respectively, we derive:
du _ f_ cot9 (wa” -1} | ¥ (21-3)
dt 2 2
dp ¢
G owu (21-4)
Substituting Equation (21-3) and Equation (21-4) into Equation (21-2):
dp ¢ ¢ T _{1W
i tanz[ (cotz) (uu I] >
1 2¢
+3 (sec ) u(wTu) (21-5)

21-1
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Referring to the last term in Equation (21-5),

T T

Wll=uW=WXuX+WYuY+WZuZ=W'u=U'W

which is a scalar.

Thus, we can write:

uwlu = u(uTw) = (uuT)w (21-6)

Substituting Equation (21-6) mto Equation (21-5) for (w u) and factoring out w:

2 - fang[w - () o =9 + (28w} 3
= {[tan%u* - (tan%) (cot%) (un” - I)] - (seczg)) uuT}%

= (tan%) v —uwT + 1+ (secz-%)-) uuT]—VZX

tan%) ut + (sec29 - 1) uul + I]_‘Zl

= (tan%) ut 4+ (tanzq)) uuT + I:l% ' (21-7)

where trigonometry identities

¢ ¢ _
tan2c0t2—1 and
2cb--secgl—l are used.

21-2



NSWCDD/MP-99/17

By definition of the Rodrigues Vector p,

|
| p= (tangzi) u
p' = tan 2u*

2 (21-8)

which is, in expanded form (of skew—symmetric matrix):

0 -Pz Py o 0 ~uz Uuy o
p* = | Pz 0 -Px| = tan=| Yz 0 U|= tan—z—u*.
Py Px O 2[-uy ux o

It follows from Equation (21-8):

Ty = [tan QyT 9
pp = (tanzu ) (tanzu)
_ 2@ T
= tan“zu'u, (21-9)
Using Equation (21-8) and Equation (21-9) in Equation (21-7), we have
do _ * 4 opT|¥
&= L+e +el|T ' (21-10)
Equation (21-10) may also be expressed in vector form
dp _ 1 _

in which we used (ppT)w = p(pTw) = p(p - W),and p*w is replaced by the vector cross—product
p X W

Equation (21-10) or Equation (21-11) is the differential equation of the Rodrigues vector, driv-
en by the angular velocity of the Eye frame relative to the Head frame with components expressed

in Eye frame, that is, driven by Wf‘ﬂ; .

Pre—multiplying both sides of Equation (21-10) from the left by the inverse of [I +p" + ppT]

21-3
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we have,

-1dp
w=2[T+p"+ppT| 5 (21-12)

In Section 26, we derive the following equation for w:

«] dp
e 1 (21-13)

For Equation (21-12) to be consistent with Equation (21-13), we have to show that

-1 _ [I _ p*]
1+pp (21-14)

[I +p" + ppT]

To validate the above expression we must show that:

1 -p"]
1+ pTp

[I +p" + ppT] =1 2115

(which is to be proven).

Referring to the left side of Equation (21-15):
[1-p"][1+p" +poT]
=I+p +ppT —p " —pp" —pppT

=1+ppT —pp" —pppT (21-16)
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Now
[0 Pz Py] [Px]
p*p = pZ 0 _pX pY
_—PY Px 0 Pz_
Pz Py +PypPz 0
= PzPx = pxPz|=|0
_—pY Px + Px Py, 0_ (21-17)
[0 Pz Py 0 -Pz Py
p*p* =] Pz 0 —Px Pz 0 —Px
_—PY Px 0 | Py Px 0
-_p% — p% p2Y p2X pZ pX
=| Px Py —Pz-PY p§ pY2
| Px Pz Py Pz —Py Px (21-18)
Px Px|[1 0 O
pp’ = pTpl = || py|[pxPyPz]| = |[[PxPyPz]|Py||0 1 ©
Pz pz[|0 O 1
2 PxPy PxPz
Px
= eyPx % pz Pz
PzPx PzPy PZ
2 2 2 0 0
px + Py + Pz
- 0 pxtey+tez 0
0 0 pPx + Py T Pz

_sz _p% p)z( pY2 Px pZ
=1 PyPx —PxPy pg p22
Pz Px PzPy —Px Py

(21-19)
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Comparing Equation (21-18) and Equation (21-19), we conclude:
" = ppT — pTpl (21-20)
Substituting Equation (21-17) and Equation (21-20) into Equation (21-16):
[1-p"] [1+0" +ppT]
=1+ppT - p'p" — (pp)p”
=T+ pp’ —ppT +pTpl - 0
=1+ pTpl
= {1+ 7o)l (21-21)

Substituting Equation (21-21) into Equation (21-15), we have

- pT+p"+pp™] _(1+pTp) _,
1+pTp 1+ pTp (21-22)

QED.
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SECTION 22
ROTATION ANGULAR RATE ABOUT THE EULER AXIS
In Equation (17-30), we found that
Cii+Cxp+Ciz=1+2cos ¢ (22-1)

where ¢ is the rotation angle about the Euler Axis of the Eye frame relative to the Head frame, and
Ci1, Cy2, and Cs3 are the diagonal elements of the rotation matrix from Frame E to Frame H, as
shown below:

= CcH B (22-2)
XH Cii Cio Cus| [%g

yu| = |Ca C Cax| |ve (22-3)
zy Cyi Gy Gy |zg :

Note that the trace of Cg is the same as the trace of Cﬁ, being the sum of the diagonal elements
that are common to both matrices.

From Equation (22-1):

CcOS = %(Cll + C22 + C33 - 1) (22'4)

By definition, Cqj + Cyp + Ca3 is called the trace of C, denoted by tr C. Using this notation
in Equation (22-4): o

cosd = [tr CIE{ - 1] (22-5)

N =

We want to find %

Differentiating both sides of Equation (22-5) with respect to time:
. .do _17d.. ~E _
Slnd)-a'{'—i[atr CH 0

= Ly [% cg] (@26

22-1
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In Section 15, we found:

LcH = ciwy (22-7)

where WEIE is the matrix form of the angular velocity wfm of Frame E relative to Frame H, with the
superscript E indicating that its components are expressed in the Frame E.

Taking the transpose of both sides of Equation (22-7):

Q_[cg] [CH WHE]

dt
= [WHE] [CH] (22-8)
Now:
)" = cf (22-9)
T 0 ~Wz Wy T
[wﬁ’g] =| W%z 0 -Wx

= —whkp (22-10)

Substituting Equation (22-9) and Equation (22-10) into Equation (22-8):
L [cE] = - whs Ck (22-11)
Substituting Equation (22-11) into Equation (22-6):

o do g E* ~E
sinp- = ~ 5 | Wiz CH] (22-12)

22-2
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It follows:

do 1

dt ~  2sing

tr[wEg CE] (22-13)

T
Recalling that CE = [Cg] , and referring to Equation (22-3):

do 0 Wz Wy Cin Cy Csy
prialie E—L— tr4| Wz 0 Wx| [Cpp Cp Gy (22-14)
sin Yy Wx 0 Ci3 Cyp Cy

Remembering that the trace of a matrix is the sum of the diagonal elements or (1,1), (2,2) and
(3,3) elements, we have after expanding and summing diagonal elements:

d¢ _ 1

d ~  2sing [(=wz Cpp + Wy Cp3) + (W7 Cypy = wx Cp) + (—wy Cy, + Wy C3p)]

= + 5o [Wx (Cpy = Cyp) + Wy (Cyy = Cp3) + W (Cpy — Cy)] (2215)

In vector form, the matrix [wﬁE] becomes

wx
woar = [Wy| and wi. = [wy wow (22-16)
HE HE X Wy Wz

Wz

In Section 17, the unit vector along the Euler axis was found to be:

Uy Cp — Cyy
1 -
=11 = C C -
u Tsind 31 13 (22-17)
uz Cip — Ca

where C;; in Equation (22-17) are the elements of CII::I, which is equal to the trarispose of Cg .
Using Equation (22-16) and Equation (22-17): -

Wi U = 2—83@ [ (Co3 = Cxg) + wy (Cy1 = Cp3) + w2 (Cpy - Cyy)] (22-18)

223
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Comparing Equation (22-15) and Equation (22-18), we conclude:

%‘11 = (wE) u (22-19)

T
Note that (WEE) = [WXWYWZ] is in a vector form, while

0 Wz Wy
E* | _ w -
[WHE] = Z 0 Wx

is in matrix form of the angular velocity of the Eye frame relative to the Head frame.

Equation (22-19) is a compact form of Equation (22-15), which expresses the Euler angle rate
d
T?' Equation (22-15) expresses %S? in terms of ¢, and components of w and C, while Equa-
do

tion (22-19) expresses I in terms of vectors w and u.
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SECTION 23

UNIFIED FORM OF EULER’S ROTATION VECTOR RATE AND ROTATION
ANGULAR RATE ABOUT THE EULER AXIS

In Section 18, we derived the following equation for the Euler’s Rotation Vector Rate:

g _du _ 1| « ¢ T E
u =5 = -Z—I:u - cos(i)(uu - I)] WHE (23-1)
where
u = unit vector along the Euler’s Rotation axis.
0 —uz Uy
o= |% 0. —uy (23-2)

ux
= a Skew-symmetric Matrix corresponding to vector u = {Uy|.
uz
¢ = scalar rotation angle about the Euler’s Rotation Axis.

wﬁE = angular velocity vector of the Eye frame (Rotating frame) relative to

the Head frame (Reference frame) with the components expressed in the superscript Frame E.

Alsoin Section 22, we derived the equation for the Rotation Angular Rate about the Euler Axis
given below:

b= g e

in which ¢ and q) are scalar variables.

To achieve the unified form, combining the equations for u and ¢, we define a new vector
variable ¢ by

¢ = gu (23-4)

23-1
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in which ¢ has the same direction as u with its magnitude equal to ¢ since u is a unit vector. That

is, 0] = 0.

It follows from Equation (23-4):
u= ¢ (23-5)
Differentiating Equation (23-5):
du 1. _ 1, ]
& =50~ g10® (23-6)
Solving Equation (23-6) for ¢ and using Equation (23-5):
. d .
¢ = oG + 500
_ 4du .
= ¢y tuod (23-7)

By direct substitutions for u* from Equation (23-2), it is easy to show that

wl — I = o™ (23-8)

or

w® =1+ uv” (23-9)

where u’ = [ux Uy uz].

Now, substituting Equation (23-1) for %% and Equation (23-3) for q> in Equation (23-7), and
denoting wE by w for simplicity:
s = o Lu* — Leot @) fuuT - T i
o= ¢[2u 2cot(2>(uu I)]w + uu'w (23-10)

T

where we used wlu = uTw corresponding to the dot product w - u = u - W .
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From Equation (23-5):

,-%-
¢
u q)x
u= u)Y(=&=_1_¢y =.(2
M b
Pz
..q)-

R
¢ ¢
ez,
i I ¢
oy x
KR
0 -¢z Oy
=ql)' q)Z 0 —(bx
¢y ¢x O
_9
¢
It follows:
u*u — #q)*q)*

23-3
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Using Equation (23-9), Equation (23-12) and Equation (23-13) in Equation (23-10):
D= ol L9 L () L e ot
¢~¢[2¢ zcot(2)¢2¢¢]w+(l+uu)w
S 9_ 9 1k BT
—2¢w 2cot(2)¢2¢¢w+w+¢2¢¢w

=w+%q>*w+L[1—%cot(%)]¢*¢*w

¢2
¢ =w+Iow +a)1—2-[1—% %]q)*q)*w (23-14)

where we used a trigonometry identity:

¢ _ sing
cot2 =T cosd c0sh (23-15)

Equation (23-14) is the unified, combined form of u and q) given in Equation (23-1) and Equa-
tion (23-3).

We may change Equation (23-14), which is a matrix differential equation to a vector differen-
tial equation, by replacing, in Equation (23-14), ¢"wby ¢ X w and ¢ ¢p*Wby ¢ X ¢ X w as
shown below:

<i>=w+%¢xw+#(1—% 1—%)¢x¢xw. (23-16)

The above equation is originally developed by John E. Bortz (see his article listed in the Bibliog-
raphy 7). The Equation (23-14) is derived here by using entirely different approaches from those
originally used in the Bibliography 7 to facilitate the comprehensions by readers, consistent with
the developments in this report.

234
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SECTION 24

QUATERNION DIFFERENTIAL EQUATION

Referring to Section 19, we recall a quaternion

do
_ . . q
q = qo +iq; +jq, + kg3 = 4y
q;3
=qo+4q (24-1)
where
_ q;
q =1q; +jq, + kg3 = [92
' q;3

Equation (24-1) may be expressed by a column vector by: (see Section 19)

- 9 -
cos >
g(l) Uy sin%
4= qQ| .0
a3 Uy smi
u, sing3
_ [a
_q
cos%
= |--- ¢ (24-2)
u sini

where ¢ is the angle of quaternion q, and u is the unit vector along the Euler Axis of single equivalent
rotation and u = iux + juy + ku, .

24-1
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From Equation (24-2), we have:

q=usin%

Differentiating Equation (24-3) with respect to time:

dgq _ 1 ¢ do 9 du

a 257 H dt+8m2 dt

From Section 22,

do

de [WHE] "

And, from Section 18,

du _ (1 ,_1 ¢ T _ E
i [2u* 5 cot(z)(uu I)] WHE

(24-3)

(24-4)

(24-5)

(24-6) .

where wﬁE is the angular velocity of the Eye frame relative to the Head frame with the components

resolved into the Eye frame.

do.

Substituting Equation (24-5) for — and Equation (24-6) for (glu into ' Equation (24-4):

dt

2 i 4 ()-

(DY 1.« 1 ¢ T E
+s1n(§~ Eu —Ecot 5 (uu —I) WHE
It follows from Equation (24-7), since

cot (%) = Co8 (%) / sin (%) that:

(24-7)

(24-8)
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where we used w for wﬁE for simplicity.

T T

Now u'w = w'u corresponds to adot product u - w = w - u, which is a scalar (non—vec-
tor) quality. We can easily see that '

uuTw = u(uTw) = u(wTu) = (wla)u (24-9)
Using Equation (24-9) in Equation (24-8):

49 _ 102 rwrloos @

It —2s1n2uw+2cos2w (24-10)

We recall the skew—symmetric form w” corresponding to the vector w is given by:

O -W3 Wy .
wi=|w 0 (24-11)
—Wy Wx 0

u* = u; 0 —Uy (24-12)

By direct substitutions of Equation (24-11) and Equation (24-12), it may be easily confirmed
that

u'w = — w'u (24-13)

where
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Using Equation (24-13) and Equation (24-2) in Equation (24-10):

dq _ 1. ¢ -« 1
a Esm > wu+§q0w
S P 1
= 2w (sm > u) + > qoW
= —Llyq+d ]
2wq-i—2wq0 (24-14)
Now
dgo _ 4
d a2
= _lg,® 9
= —5sing & (24-15)
Using Equation (24-5) in Equation (24-15):
ddo _ _ 1. 9 1
T = 5 S 5 w'u
__1.. 9 1
=-—5snyuw
T ,
- —1(n 2 i
= -3 (sm > u) w (24-16)
It follows from Equation (24-16) using Equation (24-2):
dgo _ 1 1
A
= - 1wl (24-17)
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Combining Equation (24-17) and Equation (24-14), and expressing in a matrix form:

499
d9 _ |4t
dt dq
at
110 -wT] [d
T 2lw W q
where
Wx
W = wgp = |Wy
Wz

Substituting the above equations into Equation (24-18):

90 0] —wx —-Wwy -Ww, do
ds Wzl Wy  —wy 0 ds
24-5
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Expanding Equation (24-19):

d

qtdo = %(Oqo + —WxQ; — WyG — W)
d 1

wd = §(Wx% +0q; + Wya; — Wyq3)
d 1

pri i —2'(qu0 — wyq; + 0gy + Wxqs)

fam—y

d
= ‘2’(qu0 + wyq; — wxq, + 0‘]3)

Rearranging Equation (24-20)

% = 3(= avx — vy = gz
G0 = 2(20%x — aswy + )
%‘h = %(%WX + dgWy = qrwe)
-c%‘h = %(_ QWx + Q Wy + GoWe)

Expressing Equation (24-21) in a matrix form:

do —q4; 92 43
dg _ d|%f_| 9% 9 9 Wy

dt tld2| | 93 9o 43 Wy
g3 -2 491 Y

24-6

(24-20)

(24-21)
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SECTION 25

ANGULAR VELOCITY OF EYE FRAME RELATIVE TO THE HEAD FRAME IN
TERMS OF QUATERNION ELEMENTS

In this section, we derive the angular velocity of the Eye Frame relative to the Head Frame,
wﬁE » 1n terms of the quaternion elements qg, q, q2 and gs.

Reviewing some of the notations we used in the previous sections,

It follows:

[wg]

In Section 24, we derived:

9
q
q
a3

Wx
=w = Wy
wz
0 Wz Wy
w' =] Wz 0 -Wx
Wy Wy 0
0 Wz Wy
—Wz 0 Wwx
Wy —Wx 0
- wEp (25-1)
0 -Wx —Wy Wz 9o
1[Yx 0 wz —Wy q; (25-2)
2wy | -wg 0 Wwx| |a
Wz | wy -wx 0 |as

25-1
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q;
Using notation qy = |92| in which the subscript v refers to the vector part of a quaternion

43
q = qq + iq; + jg, + kqs, we may write Equation (25-2) as shown in Equation (24-18):

‘:lo _ 110 -wT do
-1l 2
Expanding Equation (25-3):

24y = -wlg, (25-4)

2qy = wgy — W'qy (25-5)

Referring to the term — w'q, in Equation (25-5):

[ 0 Wz =Wyl [q
[—W*] @ ="z 0 Wx 4z
i Wy —Wx 0 q;
[ Wzq; —WydQs
=|—-Wz(Q; + Wx g3
| Wy(qp —WxQ;
0 493 9 X
=1|4q3 0 4 Wy
_—Q2 q; 0 Wz
= Qyw (25-6)

where qf, is a 3 x 3 matrix equivalent of a 3 x 1 vector qy. See Section 1. It follows by putting
Equation (25-6) into Equation (25-5) for ~w*qy:

For any vectors AandB, A - B = B - A,or ATB = BTA. It follows from Equation (25-4):

2qy = —wlg, = — qlw (25-8)

25-2
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Multiplying both sides of Equation (25-7) by qy from the left:

2qy Qv = qyqyw + qiwq, (25-9)

Referring to the term qyqyw in Equation (25-9), recall the vector identity

AX B X C)=B(C-A)—CA - B),andthat A*B is equivalent to the vector cross—product
AXB,and A-B=B:-A:

= qv(W * qv) — w(qy * qy)

= qv(qiw) — w(qiq,) (25-10)

Now:

[*§]
atqy = [q,9,0;] [‘h]
qds

= a7 + 95 + a3
=(G+ai+a}+df)-df
.= 1-43 (25-11)
where q(z, + q% + q% + q% = 1 (as derived in Section 19) is used.
Using Equation (25-11) in Equation (25-10):
 qlgw = avalw - w(l - q})
= qvqiw — (1 - a)w (25-12)
since (1 - q%) is a scalar.
Using Equation (25-12) in Equation (25-9):

297 4v = qvqiw — (1 - a2} w + qiwq, (25-13)

25-3
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Now pre-multiplying Equation (25-4) by qy on both sides:

2qv 90 = — qyw'q, = —q,qTw

since wlqy = qiw for the dot product.

Putting Equation (25-14) into Equation (25-13) for q.qw, and transposing:

243Gy + 29,90 = - (1 - q%) w + quwqp
Now multiplying Equation (25-7) by qo (scalar):
290y = q'Wqo + Wq3
It follows:
q*wqo = 2q, (.lv - qu
Putting Equation (25-17) into Equation (25-15) for q*wqp :
2q3ﬁv + 2qvc.10 = —-w+ qgw + 2q0(.1v - wq%
= — w + 2q f]v
Solving for w:

WII::IE =w= 2[% (.lv - ‘.10 qv — q:qv]

d dg «[ dqy
= Z[qoaqv - ('at_())qv - q"(_c(ilt—)]

(25-14)

(25-15)

(25-16)

(25-17)

(25-18)

(25-19)

Equation (25-19) is the desired results which expresses the angular velocity of the Eye Frame
relative to the Head Frame with components expressed in the Eye frame. That is, wﬁE in terms

q;

of the elements of a quaternion, qg and qy = |92| and their derivative with respect to time.

ds3
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\
?
l

1 -—
Qo = 5(1 + Cyp + Cyy + Cy)°
1
= %(1 + Ry; + Ry + Rys)’ (25-20)
Cy3 —C3 Ry — Ry
= = 25-21
ql 4q0 4q0 ( )
C>31 - C13 R13 - R31
= - 25-22
q2 4q0 4q0 ( )
C,—-C R,, — R
g =2 _u_ Ry 12 (25.23)

4q, 4q,

25-5/(25-6 blank)
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SECTION 26

ANGULAR VELOCITY OF EYE FRAME RELATIVE TO HEAD FRAME
IN TERMS OF RODRIGUES PARAMETERS

In this section, we derive an equation to express the angular velocity of the Eye frame relative
to the Head frame with the components expressed in the Eye frame ( WEE ), in terms of the Rodrigues
parameters P;, P,, and P, which we have discussed in Section 20.

In Section 25, we derived the equation for WEE in terms of the quaternion elements qg, q7,
g2, and q3. The equation is shown below:

d dq d
Wi = Z[qo% = -d—toqv] — 2qy X —(?TV (26-1)

Here qy denotes the vector part of a qﬁaternion q =qp +iqp + jgz + kqs. Thatis

q;
qv = 92| = iq; + jq, + ka3 (26-2)
q3

Our approach is to express each term on the right side of Equation (26-1) in terms of
P, P, and p;. Referring to Section 20:

q;
P go
p =P =|g (26-3)
P3 0
93
do
It follows:
q: P10
qv = |92 = |P29 (26-4)

qs3 P343
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Using Equation (26-4):
PP =p%+tpy+p}=p+p3+p3

_GtHtg

%
It follows:
1+p.p=qg+q%+2q%+q§
9
= ?11% (26-5)
since g3 + g% + g2 + q% = 1 (see Section 19).
From Equation (26-5): |
Qo = —l—l =(l+p- P)_% (26-6)
(I+p-p)y
Now
qv = iq; + jq; + kq;
= ip1qo + JP290 + kp3qp
= qofipy + Jp; + kps)
= qoP ' (26-7)
Substituting Equation (26-6) into Equation (26-7):
Qu=pd+p P (26-8)
Using the chain rule, the time—derivative of q, becomes:
qv = 9—% = ad—t[p(l +p- p)"%}
=La+p-pirpdatp-p (269)
dt dt

26-2
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Referring to Equation (26-9):

[ N]10%Y

=1 - . .
d%(1+p‘p) : =——%(1+p-p) (p-p+p'p)

~La+p-p7F (209

1l

—A+p-p? (o 0) (26-10)
Note that p p=p- p for dot product.
Using Equation (26-10) in Equation (26-9):
qQ = i—‘t’(l +p-pT —pl+p-p (P~ o) (26-11)

Now from Equation (26-6):

=3 =4 1+p-p? (26-12)
dt?0  dt
_3 - .
= —%(1+p°p) 2(p-p+p' p)
=3 /-
=—(+p-p z‘(p.p) (26-13)
Next, using Equation (26-6) and Equation (26-11):
. -1 |dp -1 _3 /.
Qv =>0A+p-p) *|5zA+p-p) *—p+p-p ~° (p'p)
-1 d -2 |
=Q+p 0 F-pl+p-p>(p-p) (26-14)
Next, using Equation (26-13) and Equation (26-8):
° =3 /- -1
Qg =~ +p-p) (p-p)[p(1+p-p) ’]
-2 M
=—+p-p " p(p-p) (26-15)

26-3
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(L1-92)

I

(91-92)

:Q X qv TE.Q+ D - ..__ua.a+ CT

_Ta.a+:A@x¢|¢%¢vTa.a+:q+?.&N;?Q+ﬁz|¢73.g+sw

|€.a+cm_x._l?.&a N;E.._+:+Ta.av TQ_.Q+%|T€.¢+~ET (d-d+ 1)

TU x Ab — >vo@ _ >6oLN - M

:(1-92) uonenby oyur (971-9z) uonenby pue ‘(g1-97) uonenby ‘(11-97) uonenby ‘(9-9z) uonenbyg Sunnusqng

A

d.

[

"[[oMm se Ie[eds sI Ta . d 4 1) 2103019y pue tefeos e st d . d uispue ‘g = d x d douIs

d.d

d) : (@-d+1dx;
€ 1

_(@.d+1dxd=
dx . (d.d+1d=

. -

(6-9), @ - d+dxd-dx _(d.0+1)d=

@.d+1d—-dx _(d.-d+71)d=

Vmna.a+31|m|a.=+CLXTE.Q+CQH>@X>v

}(11-92) uonenby pue (8-97) uonenby Suisn ‘Ajjeury
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It follows, factoring out (1 + p - p) '

- wE = 2 dp _ dp
W = WHE 1+p-p[dt p><dt]

or in matrix form:

__ 2 _ ] dp
w_1+pr[1 o] &
where
0 —Ps3 P2
p* =| P3 0 0P
P2 Py 0
p-p=pp=p%+p}+or}
and

26-5/(26-6 blank)
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APPENDIX A

DEMONSTRATION OF (AB)T = (AB)~1 = BT AT = B-1 A-1
(FOR 3 X 3 ORTHOGONAL MATRICES A AND B)
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DEMONSTRATION OF (AB)T = (AB)"1 = BT AT = B-1 A-1
(FOR 3 X 3 ORTHOGONAL MATRICES A AND B)

This demonstration is straight forward, based on direct multiplications.

For Rotation Matrices:
a1 a4y aj3 b;; by b3
A=| 8 3 83| and B =| by by by (A-1)
a3 asy a3 b3 by by
411 a1 a3
AT =A"1=1| 2 ay a,;
413 83 as (A-2)
and
bj; by by
BT = B~1 =| by by bsy
bj3 by3 by (A-3)

since A and B matrices are othogonal.

It follows:
411 3413 23 by; by, by;
AB = | 21 ayp ap by by by | =
a3; a3 as; b3 b3y by

apbyy +apby; +agsbay  agbyp +appbyy +apgby,  a; by 4+ apby; + asbas
a1by; + apbyy + apsbs;  aybyy + apnbsyy + apbsy  aybys + aybys + aysbs,

a31byy + agby; + azsby;  a3byy + agbyy +agby,  agbyy + agby; + agby (Ad)

A-3
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It follows by (1) exchanging rows and columns of Equation (A-4), (2) noting that the product
of two Orthogonal Matrices is another Orthogonal Matrix, and (3) remembering that the transpose
of an Orthogonal Matrix is equal to the inverse of the original matrix, that:

[AB]" = [AB]"! =

;b + apbyy +agsbyy  aybyy +anby; 4 aysby  ag by + agby + assby
apbyy + appbyy +asbyy  aybyy +apby, +oayby,  agbyy + oagby, + agsbs;
ayiby3.+ ajpbgs + ay3bsy  ap;byy + aybyy +apbyy ag by + agby; + aggby

(A-5)
Now, from Equation (A-3) and Equation (A-2):
BTAT = B—ip -1
b;; by by a1; 1 asz
=| by by by adp A a3 | =
b3 by by 413 dy3 a3z
bjjay; + byjag; + byja;;  byjay; + byjay + byjay;  byjagy + byjas, + byjass
bpoayy + bpajy + byyagy  bipay + byyagy + byjayy  bipagy + byyaz, + byyas
bysayy + byzagy + byzaj;  byzayy + bpagy + bazay;  biaaz; + bysaz + bias, (A-6)
Comparing Equation (A-5) and Equation (A-6), we conclude:
[AB]T = [AB] ! = BTAT = B~1p "1 (A-7)

Equation (A-7) is true only for the Orthogonal Matrices.

For Non-orthogonal Square Matrices, the formula for the transpose and the inverse are sepa-
rate, and Equation (A-7) does not hold. That is,

[AB]T = BTAT (A-8)
[AB]"! = B~ 1A~ (A-9)

But, generally, BTAT £ B-1A-1,
By extension:

[ABC)T = [[AB]C]" = CT[AB]”

= CTBTAT ’ (A-10)

A4
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and
[ABC]~! = [[AB]C] ™! = C~![AB] !
=C-1B-1a-1 (A-11)
and
[ABC]T = [ABC]! = CTBTAT = C-1B-1A-L,
Now denote vector r and r?¥ by:
T
X x|
r = Y]andrT=[y = [xyz]
z

z (A-12)

Then:

[ Cii Ci2 Ci3 X
Cr =| Cy Cp Cys
Cs Gy Cs;

N <

[ Cyx + Cpy + Cysz

Cyix + Cyy + Cyaz

It follows:

[CrT = [Cux +Cpy +Ci3z Cyx+ Chpy + Cpz Cyx + Cypy + C33z] (A-14)

Now,
Cll C21 C31
r’CT=[xyz]l| Cin Cxn Cy,
13 C23 C33
=[Cix +Cpy +Cpiz Cyx + Cpy + Cpiz Cyyx + Cyy + Cy7] (A-15)

A-5
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Comparing Equation (A-14) with Equation (A-15), we conclude

[Cr]T = rTCT (A-16)
Example: Application to Fick’s System.
In Section 6, we found out that for the Fick’s System of rotations,

E _ (F, F, F, .H
rr=Cg C@Cyr (A-17)

where

Xg XH
rE=| vg | and t¥H =| ¥y
Zg Zy

Taking the transpose of Equation (A-17):

T
T F
[rE] = [CFZ Cllif Cfll rH]

T
T

_[.H F, F,| F

= [r ] [[sz CFT] CHI:I

= [ = | 5] [ex C%]T]

= [rH]T = :Ci‘]T[CEf]T[CE]T (A-18)

A-6
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Now:
T
[rE] = [XE YE ZE]
T
[rH] = [XH YH ZH]
[ F-T F.
Cs| =Re
- -T
_ClFi_ = RII::Z (A-19)

It follows from Equation (A-18) and Equation (A-19):

[XE yE ZE] = [XH YH ZH] RII.':II RIl:2 Riz (A-ZO)

1

in terms-of R matrices.

Remember that the C matrix transforms the vector expressed in column vector form such as

X
r= (%’) from one frame to another, and the matrices representing subsequent rotations are multiplied

from the left as shown in Equation (A-17). The R matrix transforms the vector form expressed in
row vector suchasrT (x y z) from one frame to another, the matrices representing subsequent rota-
tions are multiplied from the right as shown in Equation (A-20).
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EQUATION OF MOTION FOR THE SEMICIRCULAR CANAL!

The semicircular canal (SCC) is a rigid circular tube with a very small uniform cross—section.
Each canal completes a hydrodynamic circuit through the utricles (which it shares in common with
the other two canals on its side of the head) with negligible coupling with the other canals. The fluid
flow within the canal is laminar because of the small, smooth bore of the canal. The canal has high
viscous damping as indicated by the small Reynolds number of the flow. Itis common to use lumped
analysis and ignore the flow distribution within the canal. Thus, the fluid is considered to rotate as
a ring relative to head.

The following analysis is based on angular rotation of the canal in a single plane. Consider a
counterclockwise rotation (defined as the positive direction of rotation) of the canal and hence the
head as described in Figure B-1. The damping torque (positive when acting counterclockwise) My
on the fluid ring is assumed to be

My = -BG(F/H) B-1)

where 9 (F/H) is the angular velocity of the fluid relative to the head and b is a positive proportional-

ity constant. Note that —b 6 (F/H) s clockwise relative to the head in this case because of inertial
reaction. The elastic restoring torque M, on the fluid ring is assumed to be

M. = —6(F/H) (B-2)

where 0 (F/H) is the angular displacement of the fluid relative to the head and k is a positive propor-
tionality constant.

1. Reprint from Bibliography 17 by Kee Soon Chun.
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HEAD ROTATION

ABOUT 0.3mm

UTRICULAR SAC
OF VESTIBULE

BONE
CUPULA
DEFLECTION
PERILYMPH
ENDOLYMPH

MEMBRANOUS CANAL

AFFERENT NERVES

Figure B-1. The Semicircular Canal (diagrammatic)
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By the rotational form of Newton’s second law,

JB(F/T) = My + M. = -bg(F/H) — kO(F/H) B-3)

in which J is the fluid ring moment of inertia and B(F/I) is the angular acceleration of the fluid rela-

tive to inertial space. By denoting the angular acceleration of the head relative to space by é(H/ I),
it follows that:

6(F/1) = 6(H/1) + 6(F/H) (B-4)

Assuming that the cupular deflection relative to the head 6(C/H) is proportional to the angular
displacement of the head relative to fluid 6(H/F),

6(C/H) = a6(H/F) = -ab(F/H) | (B-5)

where a is a positive constant, which reflects the fact that the area of the canal is not equal to the area
of the ampulla. Substituting Equation (B-4) and Equation (B-5) into Equation (B-3)

J6(C/H) + b (C/H) + kB(C/H) = alb(H/I) (B-6)
Replacing cupular deflection 6(C/H) by ¢ and 6 (H/T) by H in Equation (B-6),
16 + bo + ko = aJH (B-7)

It is the same form as the differential equation for a torsion pendulum which describes the tor-
sional vibrations of an elastic shaft with a circular rotor rigidly attached to it. The canal system is
probably ten times more than critically damped.

Since the system represented by Equation (B-7) is very overdamped (b% >> Jk) and therefore
% > > %, the transfer function (in Laplace transform notation) of the SCC may be approximated

by:

WO aT;T,
CHG)  (Tys + 1) (Ts + 1)

(B-8)
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where

T, =

~lo

(B-9)

Tzz

(o B

For humans, T; is thought to be about 10 ~ 16 sec and T about 0.003 sec. For the frequency
range below 5 Hz corresponding to normal daily activities, where Tp s < 1, the transfer function may
be further approximated as

¢(s) N aT,T,
His) Tis+1

(B-10)

Further, in the range above about 0.05 Hz, where sT; > 1, which includes most normal head
movements,

q)(s) 1
-_— T =
E(s) (&T5) 5 (B-11)

which is a pure integrator with gain (aT53).

It follows that in this frequency range,

¢m«fﬂmm«ﬁm
(B-12)

Thus, the output of the SCC is proportional to head velocity over the range of natural head
movements, the role of SCC being that of an integrating accelerometer or velocity transducer.
Indeed, the experimentally measured firing rate modulation of primary vestibular afferents is
proportional to head velocity over this frequency range.

The gain constants of the internal neural signal processing elements are, for practical purposes,
all indeterminable because the signals all consist of the firing rates of large populations of neurons,
only a few of which can be observed at any one time. Only the final overall gain is important and
interior gains may be adjusted arbitrarily so long as the total gain is kept correct. Thus, the gain of
the transfer function Equation (B-10) of the SCC may be arbitrarily adjusted so that Equation (B-10)
will behave like a pure integrator with a unity scale factor at midband frequencies. That is, T is

B-6
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relabeled the cupula long-time constant T, and (aT;T») is replaced by T,. It follows from Equa-
tion (B-10) that:

P(s) T,
H(s) = sT, + 1

(B-13)

which reduces to 1/s for sT, > 1. The break frequency for 1/(sT; + 1) is about 0.016 Hz with T, =
10 sec (for humans). Thus, for all frequencies of normal head rotation above 0.016 Hz, the canals
integrate head acceleration and produce a signal proportional to head velocity.

B-7/(B-8 blank)
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EQUATION OF MOTION FOR THREE-DIMENSIONAL
EYE ROTATIONS

We assume the Eye globe is a rigid sphere with a uniform density.

We use the standard Eye frame (Frame E) with x—axis forward, y—axis leftward, and z—axis
upward with the origin at the center (which coincides with the center of mass) of the sphere.

We can easily see that each axis is the axis of symmetry in the sense that the rotation of the
sphere about respective axis alter neither shape nor density distribution of the sphere.

This symmetry considerably simplifies the derivation of the equation of motion. Although the
equation is well-established, it is derived here from scratch to familiarize readers with vector opera-
tions and with the application of the Coriolis Law.

By definition, the angular momentum (moment of momentum) H¢ about C (the center of
mass) of a point mass my located at point k with distance Rey from point Cis (summing for all k’s):

He = %(RCk x m Py Ry 1)

where P{Rq, = 'C%RCk , With % () performed in inertial space. By definition, the torque Mc
about the center of mass C is

where F, is the external force exerted on the point k.

Differentiating Equation (C-1) with respect to time in inertial space (using chain rule):

PH: = % (PyRex X my Py R, + Ry, X my P R

= %(RCk x m, P} R, (C-3)

because

P Ry X mg P Ry = mg (P Ry X PyRgy) = 0. (C-4)

C-3
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since the mass my is a scalar.

Now (by vector addition),

Ry = Ryc + Rey (C-5)

where I is the origin of inertial frame, as shown in Figure C-1 below.

C

I

(inertial point)

Figure C-1. 1is Origin of Inertial Frame

From Equation (C-5):

Rex = Ry = Rye (C-6)

C-4
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Substituting Equation (C-6) into Equation (C-3):

PiHc = % [RCkxmkP% (le'Rlc)]
= 2 (Rgy x mgPPR,,) — 2 (Rg x my PR
1 \Rex X mg Py Ryy ) = 4= Rey X my Py Ry

= z (Rex x Fy)

k

C-7

because m, P? R, = F, by Newton’s second law.

Now, % m, R, = 0 by definition of the center of mass relative to the point C, which is also

the origin of Frame E.

It follows from Equation (C-7) and Equation (C-2):

PH=ZR XFJ)=M
Hc k(Ck k) C C-8)

In other words, the applied torque about the center of mass is equal to the time rate of change
of the angular momentum around the center of mass with respect to inertial space.

To determine Hc (the angular momentum about the center of mass) in terms of the coordinates
Xk, Yk and zy of Ry, we start with Equation (C-1), which is repeated below:

He = % (my Ry X PRy ) ©-9)

According to the Coriolis Law, treating the Head frame as a fixed or reference frame and Eye
frame as a rotating frame, we have:

PyRey = PERgy + Wy X Ry (C-10)
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where

PH RCk = 'é—it‘RCk in Fl'ame H
PR = iR in Frame E
E T Ck dt " Ck

WHE = angular velocity of Frame E relative to Frame H.

In Equation (C-10), Pg Rckx = 0 because Rcy in eyeball is fixed. It follows from Equa-
tion (C-10):

PyRe = Wi X Rey (C-11)
Substituting Equation (C-11) into Equation (C-9):

Hc = % [mk Rei X (Wye X Ry )]

(C-12)
where we replaced P1Rck by PuRek with good approximation.
From a standard mathematical table, we recall, for vectors V;, V, and V3:
Vi X (VX Vi) = (V- V3]V, = (V- V) Vs (C-13)

Applying Equation (C-13) to Equation (C-12), identifying V; with my Rk, V2 with wyg, and
V3 with Rcy:

He = %(mk Rey - Rey) Wie — Ek: (my Ry * Whe) Re

(C-14)
where
x 1F
Ry =xI+yJ+zK= [Yk] = RE,
ZK (C-15)
X
WHE = le + WYJ + WzK = WY = WEE
Wz (C-16)

where the superscript E implied that the components are expressed in Frame E, or in Eye frame.

C-6
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If coordinate axes are symmetric axes such as the axes of Frame E fixed to the Eye globe, the
expression for HE (with components expressed in Eye frame) expressed in terms of Equation (C-15)

and Equation (C-16) becomes much simpler.

Substituting Equation (C-15) and Equation (C-16) in Equation (C-14), we have, after some
algebra cancels out terms involving Xy Yk, Yk Zk, and Xy Zk:

-H - [Z my(y} + zlzc)]WX
E_ 5| 2. .2
HE = II:IIY = [z mk(xk + zk)]wy
z [z mk(xﬁ + yf()]wz
-JX Wy
= lly wy
Tz Wz (C-17)

where the meaning of Jy, Jy, and J, should be obvious from the first equation of Equation (C-17).
It follows:

E 0 0

Hy Ek:mk(yi + 23) z 0 wx
HE = |H = mk(xz +22) w
C Y X k K Z 5 " Y

H, 0 k mk(xk + Yk) wz

0 0 (C-18)
or

Hy Jx 0 0] [wx
HE = |Hy[ = [0 Jy O] |wy| = Jwkg

Hz 0 0 Jz| |¥z (C-19)

where J represents the coefficient matrix on the right side of Equation (C-18). We use J instead of
I to avoid confusion with Identity matrix.

Equation (C-17) to Equation (C-19) show that the direction of the angular momentum is the
same as that of the angular velocity for Eye frame. However, in general, the angular momentum
Hc and the angular velocity w of a rigid body are not in the same direction. By definition, the three
axes of an orthogonal (mutually perpendicular) frame with this property are called principal axes
of inertia or, briefly, principal axes of the body.

C-7
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The symmetric axes, such as the axes of Eyeframe, are always principal axes. However, not
all principal axes are symmetric axes. That is, there are principal axes that are not symmetric.

Now, returning to Equation (C-8), which is repeated below:
PiH: = M (C-20)

In our study of eye rotations, we may regard the Head frame as inertial frame, with good
approximation. So we may write Equation (C-20) as

PH HC = MC (C-21)
Applying the theorem of Coriolis between Head frame and Eye frame for PgHc in Equa-
tion (C-21):
PyHc = P He + wyg X He = M¢ (C-22)
In other words, the applied torque about the center of mass of eye produces and is equal to the
rate of change of angular momentum with respect to the Eye frame plus the cross product of the an-

gular velocity of the eye relative to the head and the angular momentum of the head about the center
of mass.

Using notation given in Equation (C-16) and Equation (C-17):

I J K
Wee X He = [WxWyWz
HE T 0 lHyHy H,
I J K
= | Wx Wy Wz

JxwWx  Jywy Jzwz

[Twywz — JyWyWy
= [IxWxWz — Jzwxwz
JYWXWY - JXWYWY (C_23)

C-8
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and
q X
Hy
-JXWX-
= di Jywy
3wz
| J (C-29)
TxOp | 14 0y
= % Iy8,| = |Jy by
I éz Iz 62 ©25)

Substituting Equation (C-23) and Equation (C-24) into Equation (C-22) and using
T
Mc = Mg = [Mx My M| :

d
Ix g Wx + [Tz = Jy) wywz = My

d
Jy dt Wy + (JX - JZ) WxWz = MY (C-26)

d
Iz 5 Wz + [Ty = Ix) wxwy = My

Equation (C-22) and Equation (C-26) apply to the body—fixed (eye—fixed in our case), princi-
pal axes of a rigid body (Eye frame axes that are symmetric in our case) with origin at the center
of mass. In general, these equations represent highly nonlinear differential equations that are diffi-
cultto solve. The solution, when obtained, is the angular velocity of Eye globe with respect to Head
expressed in Eye frame, and does not give directly the motion relative to Head axes.




NSWCDD/MP-99/17

For a special case of only an axis rotation, such as x—axis rotation, wy = wy = 0. Itfollows
from the first equation of (C-26),

d

' . dex . .
Denoting, wy = dy 5 eX’ we get from Equation (C-27) that
Ty Oy = My (C-28)

which is commonly used in the one—dimensional analysis.

C-10
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